Bilkent University Department of Mathematics

Problem Of The Month

November 2010

Problem:

Find all natural numbers n not exceeding 13 and representable in the form $\frac{2^{l}-2^{m}}{10^{k}}$ for some positive integers l, m and k.

Solution:

The answer is: $3,6,12$.
$3=\frac{2^{5}-2^{1}}{10^{1}}, 6=\frac{2^{6}-2^{2}}{10^{1}}, 12=\frac{2^{7}-2^{3}}{10^{k}}$.
The sequence of last digits of $2^{i}, i=1,2, \ldots$ is periodic with period 4 . Therefore, $l=m+4 j$ and

$$
n=\frac{2^{m}\left(2^{2 j}-1\right)\left(2^{2 j}+1\right)}{2^{k} \cdot 5^{k}}
$$

Since $2^{2 j}-1$ and $2^{2 j}+1$ are relatively prime, one of them contains factor 5^{k}. Moreover, the factor do not contain any other factor: the possible additional factor is at least 3 , but then $\left(2^{2 j}-1\right)\left(2^{2 j}+1\right) \geq 3 \cdot 7>13$.

If $2^{2 j}-1=5^{k}$, then since $j \neq 0,1$ we get $n=2^{m-k}\left(2^{2 j}+1\right)>13$.
If $2^{2 j}+1=5^{k}$, then $n=2^{m-k}\left(2^{2 j}-1\right)$ and for all $j>1$ we get $n>13$. For $j=1$ we get the only possibilities are $n=3,6,12$.

