

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2010

Problem:

Suppose that a real polynomial P of degree 2010 has 2010 distinct real roots. Let q(P) be the total number of nonzero coefficients of P. What is the minimal possible value of q(P)?

Solution:

Between arbitrary two real roots of a polynomial P there is a real root of the polynomial P'. Therefore, P' has n-1 distinct real roots. By repeating of this argument we get that k-th derivative polynomial P^k has 2010-k distinct real roots. Let a_l and a_{l-1} be two neighboring coefficients of the polynomial P. Let us show that at least one of them is not zero. On the contrary, if $a_l = a_{l-1} = 0$ then the last two coefficients (the coefficient at x and x^0) of the polynomial P^l are zeros and P^l has a multiple root 0, which contradicts to the fact that P^l has 2010 - l distinct real roots. Therefore, at least 1005 coefficients of P are non-zeros and $q(P) \ge 1006$. The polynomial $P(x) = \prod_{s=1}^{1005} (x^2 - s^2)$ of degree 2010 has 2010 distinct real roots and 1006 nonzero coefficients. Thus, q(P) = 1006.