

Bilkent University Department of Mathematics

Problem Of The Month

September 2010

Problem:

Let $\Delta(a, b, c)=\max (|a-b|,|b-c|,|c-a|)$. We say that a triple (a, b, c) is good, if for all $x \in[0,1]$ we have $-1 \leq a x^{2}+b x+c \leq 1$. Find a minimal constant C such that for all good triples $\Delta(a, b, c) \leq C$.

Solution:

Since $f(0)=c, f(1 / 2)=a / 4+b / 2+c$ and $f(1)=a+b+c$, we get $a=2 f(0)+f(1)-4 f(1 / 2), b=-3 f(0)-f(1)+4 f(1 / 2)$ and $c=f(0)$. Therefore, $|a-b|=|5 f(0)+3 f(1)-8 f(1 / 2)| \leq 16,|b-c|=\mid-4 f(0)-f(1)+$ $4 f(1 / 2) \mid \leq 9$ and $|c-a|=|-f(0)-2 f(1)+4 f(1 / 2)| \leq 7$.
Thus, $\Delta(a, b, c) \leq 16$.
Straightforward calculations show that for all $x \in[0,1]-1 \leq 8 x^{2}-8 x+1 \leq 1$.
Therefore, $(8,-8,1)$ is a good triple. Since $\Delta(8,-8,1)=16, C=16$.

