

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

September 2010

Problem:

Let $\Delta(a, b, c) = max(|a - b|, |b - c|, |c - a|)$. We say that a triple (a, b, c) is good, if for all $x \in [0, 1]$ we have $-1 \le ax^2 + bx + c \le 1$. Find a minimal constant C such that for all good triples $\Delta(a, b, c) \le C$.

Solution:

Since f(0) = c, f(1/2) = a/4 + b/2 + c and f(1) = a + b + c, we get a = 2f(0) + f(1) - 4f(1/2), b = -3f(0) - f(1) + 4f(1/2) and c = f(0). Therefore, $|a - b| = |5f(0) + 3f(1) - 8f(1/2)| \le 16$, $|b - c| = |-4f(0) - f(1) + 4f(1/2)| \le 9$ and $|c - a| = |-f(0) - 2f(1) + 4f(1/2)| \le 7$. Thus, $\Delta(a, b, c) \le 16$. Straightforward calculations show that for all $x \in [0, 1] - 1 \le 8x^2 - 8x + 1 \le 1$. Therefore, (8, -8, 1) is a good triple. Since $\Delta(8, -8, 1) = 16$, C = 16.