Bilkent University Department of Mathematics

Problem Of The Month

May 2010

Problem:

Let a, b and c be positive real numbers and $s=a b c$. Find the minimal number L satisfying

$$
\frac{a^{3}-s}{2 a^{3}+s}+\frac{b^{3}-s}{2 b^{3}+s}+\frac{c^{3}-s}{2 c^{3}+s} \leq L
$$

Solution:

We prove that $L=0$. Let

$$
f(a, b, c)=\frac{a^{3}-s}{2 a^{3}+s}+\frac{b^{3}-s}{2 b^{3}+s}+\frac{c^{3}-s}{2 c^{3}+s}
$$

Since $f(t, t, t)=0, L \geq 0$.
Let us prove that $L \leq 0$, equivalently $f(a, b, c) \leq 0$. Since

$$
f(a, b, c)=\frac{-3 a^{3} s^{2}-3 b^{3} s^{2}-3 c^{3} s^{2}+9 s^{3}}{\left(2 a^{3}+s\right)\left(2 b^{3}+s\right)\left(2 c^{3}+s\right)}=\frac{3 s^{2}\left(3 s-a^{3}-b^{3}-c^{3}\right)}{\left(2 a^{3}+s\right)\left(2 b^{3}+s\right)\left(2 c^{3}+s\right)}
$$

we have to establish the inequality $3 s-a^{3}-b^{3}-c^{3} \leq 0$, which is an arithmeticgeometric inequality for a^{3}, b^{3}, c^{3}. Done.

