

Bilkent University Department of Mathematics

Problem Of The Month

April 2010

Problem:

Let a_{1}, a_{2}, \ldots be a non-constant arithmetic progression consisting of natural numbers. Suppose that for some $n, \sqrt[2010]{a_{n}}$ is rational. Prove that for some $m, \sqrt[3]{a_{m}}$ is rational but $\sqrt[2]{a_{m}}$ is irrational.

Solution:

$k-t h$ root of a natural number is either irrational or natural. Therefore, for some $n, \sqrt[2010]{a_{n}}$ is a natural number. Consequently $\sqrt[3]{a_{n}}$ is also a natural number. Let d be a common difference of the arithmetic progression. Consider a natural number $S=T^{3}$, where $T=\left(\sqrt[3]{a_{n}}+\sqrt[3]{a_{n}} d^{2}\right)$. Since $S=a_{n}+d\left(3\left(\sqrt[3]{a_{n}}\right)^{2}+3 \sqrt[3]{a_{n}} d+d^{2}\right)$, S is a member of our arithmetic progression : $S=a_{m}$ and $\sqrt[3]{a_{m}}=T$ is a natural number. Let us show that $\sqrt[2]{a_{m}}$ is irrational. On the contrary, suppose that $\sqrt[2]{a_{m}}$ is a natural number: for some natural $P, S=P^{2}$. Since in addition $S=T^{3}$, the prime factorization of S has a form: $S=p_{1}^{6 a_{1}} p_{2}^{6 a_{2}} \cdots p_{l}^{6 a_{l}}$. Thus, T is an exact square. Since $T=\sqrt[3]{a_{n}}\left(1+d^{2}\right)$ and $\sqrt[3]{a_{n}}$ is an exact square, $1+d^{2}$ is an exact square $(d \neq 0)$. A contradiction $\left(d^{2}<1+d^{2}<(d+1)^{2}\right)$.

