

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

March 2010

Problem:

Find all functions $f : \mathbf{Q} \longrightarrow \mathbf{Q}$ satisfying f(1) = 2 and f(xy) + f(x + y) = f(x)f(y) + 1, where \mathbf{Q} denotes the set of all rational numbers.

Solution:

Put y = 1 in the functional equation: f(x) + f(x+1) = f(x)f(1) + 1. Since f(1) = 2, we get f(x+1) = f(x) + 1 and f(x+q) = f(x) + q for all integers q. Thus, f(p+1) = p+1 for all integers p. For integer p and natural q, put $x = \frac{p}{q}$ and y = q in the functional equation: $f(\frac{p}{q} \cdot q) + f(\frac{p}{q} + q) = f(\frac{p}{q})f(q) + 1$ or $f(p) + f(\frac{p}{q}) + q = f(\frac{p}{q})(q+1) + 1$. Therefore, $f(\frac{p}{q}) = \frac{p+q}{q} = 1 + \frac{p}{q}$. The function $f(\frac{p}{q}) = 1 + \frac{p}{q}$ satisfies the conditions.