

Bilkent University Department of Mathematics

Problem Of The Month

March 2010

Problem:

Find all functions $f: \mathbf{Q} \longrightarrow \mathbf{Q}$ satisfying $f(1)=2$ and $f(x y)+f(x+y)=$ $f(x) f(y)+1$, where \mathbf{Q} denotes the set of all rational numbers.

Solution:

Put $y=1$ in the functional equation: $f(x)+f(x+1)=f(x) f(1)+1$. Since $f(1)=2$, we get $f(x+1)=f(x)+1$ and $f(x+q)=f(x)+q$ for all integers q. Thus, $f(p+1)=p+1$ for all integers p. For integer p and natural q, put $x=\frac{p}{q}$ and $y=q$ in the functional equation: $f\left(\frac{p}{q} \cdot q\right)+f\left(\frac{p}{q}+q\right)=f\left(\frac{p}{q}\right) f(q)+1$ or $f(p)+f\left(\frac{p}{q}\right)+q=f\left(\frac{p}{q}\right)(q+1)+1$. Therefore, $f\left(\frac{p}{q}\right)=\frac{p+q}{q}=1+\frac{p}{q}$. The function $f\left(\frac{p}{q}\right)=1+\frac{p}{q}$ satisfies the conditions.

