Bilkent University Department of Mathematics

Problem Of The Month

February 2010

Problem:

Let n be a natural number such that the equation $a^{n}+b^{n}=c^{2}$, where a, b and c are prime numbers has at least one solution. Find the maximal possible value of n.

Solution:

For $n=1$ there is a solution $a=7, b=2, c=3$. Let us prove that there is no any solution for all $n>1$.

Suppose that n is odd. Then $(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\cdots+b^{n-1}\right)=c^{2}$. Therefore, $a+b$ divides c^{2}. Since $a+b<a^{n}+b^{n}$ and c is prime, $a+b=c$. Then $c^{2}=(a+b)^{2}=a^{n}+b^{n} \geq a^{3}+b^{3}>2 a^{2}+2 b^{2}$ or $(a-b)^{2}<0$. A contradiction.

Suppose that $n=2 m$ is even. One of the numbers a, b, c must be 2 . Since c can not be equal to 2 , suppose that $a>b=2$.

Let $a=3$. Then $3^{2 m}+2^{2 m}=c^{2}$. If m is odd, then $2^{2 m}$ ends with 4 and $3^{2 m}$ ends with 9 , so $3^{2 m}+2^{2 m}$ end with 3 . If m is even, then $2^{2 m}$ ends with 6 and $3^{2 m}$ ends with 1 , so $3^{2 m}+2^{2 m}$ end with 7 . c^{2} ends with 1,5 or 9 . A contradiction.

Let $a \geq 5$. Then $\left(a^{m}\right)^{2}+2^{2 m}=c^{2}$. Therefore, $c^{2} \geq\left(a^{m}+2\right)^{2}$. Thus, $c^{2}-\left(a^{m}\right)^{2} \geq$ $\left(a^{m}+2\right)^{2}-\left(a^{m}\right)^{2}=4 a^{m}+4>a^{m} \geq 5^{m}>4^{m}=2^{2 m}$. A contradiction.

