

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

February 2010

Problem:

Let n be a natural number such that the equation $a^n + b^n = c^2$, where a, b and c are prime numbers has at least one solution. Find the maximal possible value of n.

Solution:

For n = 1 there is a solution a = 7, b = 2, c = 3. Let us prove that there is no any solution for all n > 1.

Suppose that *n* is odd. Then $(a + b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \dots + b^{n-1}) = c^2$. Therefore, a + b divides c^2 . Since $a + b < a^n + b^n$ and *c* is prime, a + b = c. Then $c^2 = (a + b)^2 = a^n + b^n \ge a^3 + b^3 > 2a^2 + 2b^2$ or $(a - b)^2 < 0$. A contradiction.

Suppose that n = 2m is even. One of the numbers a, b, c must be 2. Since c can not be equal to 2, suppose that a > b = 2.

Let a = 3. Then $3^{2m} + 2^{2m} = c^2$. If *m* is odd, then 2^{2m} ends with 4 and 3^{2m} ends with 9, so $3^{2m} + 2^{2m}$ end with 3. If *m* is even, then 2^{2m} ends with 6 and 3^{2m} ends with 1, so $3^{2m} + 2^{2m}$ end with 7. c^2 ends with 1,5 or 9. A contradiction.

Let $a \ge 5$. Then $(a^m)^2 + 2^{2m} = c^2$. Therefore, $c^2 \ge (a^m + 2)^2$. Thus, $c^2 - (a^m)^2 \ge (a^m + 2)^2 - (a^m)^2 = 4a^m + 4 > a^m \ge 5^m > 4^m = 2^{2m}$. A contradiction.