

Bilkent University Department of Mathematics

Problem Of The Month

December 2009

Problem:

A point $x \in[0,1]$ is said to be a good point if for any interval $[a, b] \subset[0,1]$ there exists a natural number n such that $\left\{2^{n} x\right\} \in[a, b] .(\{\cdot\}$ is the fractional part function). Prove that there are infinitely many good points.

Solution:

If x is a good point, then for any natural number k the point $x / 2^{k}$ is also a good point. Thus, in order to solve the problem, we have to prove the existence of one good point.
We use binary representations of numbers. Let $x \in[0,1]$ be a fixed number. Suppose that for any natural k and any block $t_{1} t_{2} \ldots t_{k}$, where $t_{i}=0,1$ for $1 \leq i \leq k$ there exists a natural number n such that the binary representation of $\left\{2^{n} x\right\}$ starts with $0 . t_{1} t_{2} \ldots t_{k}$. Then obviously x is a good number.
Now we construct a number x with this property. Define the following blocks: $b_{1}=0, b_{2}=1, b_{3}=00, b_{4}=01, b_{5}=10, b_{6}=11, b_{7}=000, b_{8}=001, \ldots$ Let us consider a number $x=0 . b_{1} b_{2} b_{3} \ldots b_{i} \ldots$ Consider an arbitrary combination $t_{1} t_{2} \ldots t_{k}$. By definition $t_{1} t_{2} \ldots t_{k}=b_{l}$ for some l. Since $\{2 x\}$ is just one shift of digits of x to the left, for some natural $n, 2^{l} x$ will start with $0 . b_{l}$. Done.

