

Bilkent University Department of Mathematics

Problem Of The Month

November 2009

Problem:

Suppose that the set of all natural numbers N is partitioned into 3 pairwise disjoint infinite sets A, B and $C: A \cup B \cup C=N$. Prove that there are infinitely many triples $a \in A, b \in B$ and $c \in C$ such that a, b and c are sides of some triangle.

Solution:

Assume that there are only finitely many triples $a \in A, b \in B$ and $c \in C$ such that a, b and c are sides of some triangle. Since the sets A, B and C are infinite, there exist natural numbers $a_{1} \in A, b_{1} \in B$ and $c_{1} \in C$ exceeding all these triangle sides and satisfying $1<a_{1}<b_{1}<c_{1}$. Obviously, there is a triangle with sides $a_{1}, c_{1}, c_{1}+1$, as well as a triangle with sides $b_{1}, c_{1}, c_{1}+1$. Therefore, by assumption, $c_{1}+1 \in C$. By repeating this argument, we get that all natural numbers exceeding c_{1} belong to C, and as a consequence the sets A and B are finite. A contradiction.

