Bilkent University Department of Mathematics

Problem Of The Month

October 2009

Problem:

Let Δ be a real number such that:

For arbitrary set $A=\left\{a_{1}=0, a_{2}=1, a_{3}, \cdots, a_{2009}\right\}$, with $0 \leq a_{i} \leq 1$ there exists its subset A^{\prime} such that the difference between the arithmetic means of A^{\prime} and $A-A^{\prime}$ is not less then Δ.

Find the maximal possible value of Δ.

Solution:

We prove that $\Delta=\frac{2009}{2 \cdot 2008}$.

1. Let us show that $\Delta \geq \frac{2009}{2 \cdot 2008}$. The arithmetic mean of all elements of B we denote by $m(B)$. We prove that for any set A there exists its subset A^{\prime} such that $m\left(A^{\prime}\right)-m\left(A-A^{\prime}\right) \geq \frac{2009}{2 \cdot 2008}$.
Case 1. $\sum_{i=1}^{2009}>\frac{1}{2}$. Let $A^{\prime}=\left\{a_{2}=1, a_{3}, \cdots, a_{2009}\right\}$. Then

$$
m\left(A^{\prime}\right)-m\left(A-A^{\prime}\right) \geq \frac{2009}{2 \cdot 2008}-0=\frac{2009}{2 \cdot 2008}
$$

Case 2. $\sum_{i=1}^{2009} \leq \frac{1}{2}$. Let $A^{\prime}=\{1\}$. Then $m\left(A^{\prime}\right)-m\left(A-A^{\prime}\right) \geq 1-\frac{2007}{2 \cdot 2008}=\frac{2009}{2 \cdot 2008}$.
2. Now we show that $\Delta \leq \frac{2009}{2 \cdot 2008}$ by proving that if $A=\left\{0,1, \frac{1}{2008}, \frac{2}{2008}, \cdots, \frac{2007}{2008}\right\}$, then $m\left(A^{\prime}\right)-m\left(A-A^{\prime}\right) \leq \frac{2009}{2 \cdot 2008}$ for any $A^{\prime}\left(A=\left\{0,1, \frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}\right\}\right.$ also works). Suppose that $m\left(A^{\prime}\right)-m\left(A-A^{\prime}\right)>0$ and $A-A^{\prime}$ consists of k elements. Then $m\left(A-A^{\prime}\right)$ is not less than the arithmetic mean of the numbers $0, \frac{1}{2008}, \frac{2}{2008}, \cdots, \frac{k-1}{2008}: m\left(A-A^{\prime}\right) \geq \frac{k-1}{2 \cdot 2008}$. By the same way, since the sum of all elements of A is $\frac{2009}{2}$,

$$
m\left(A^{\prime}\right) \leq \frac{\frac{2009}{2}-\frac{(k-1) k}{2 \cdot 2008}}{2009-k}
$$

Finally,

$$
m\left(A^{\prime}\right)-m\left(A-A^{\prime}\right) \leq \frac{\frac{2009}{2}-\frac{(k-1) k}{2 \cdot 2008}}{2009-k}-\frac{k-1}{2 \cdot 2008}=\frac{2009}{2 \cdot 2008}
$$

Thus, the maximal possible value of Δ is $\frac{2009}{2 \cdot 2008}$.

