Bilkent University Department of Mathematics

Problem Of The Month

September 2009

Problem:

Let $\left(a_{n}\right)$ be a sequence of real numbers such that $a_{1}=2$ and $a_{n+1}=\frac{n}{a_{1}+a_{2}+\cdots+a_{n}}$ for each natural number n. Prove that $a_{2009}>0.9995$.

Solution:

Let us prove that $S_{n}=a_{1}+a_{2}+\cdots+a_{n}>n$ by the method of mathematical induction.

1. If $n=1$, then $s_{1}=2>1$.
2. Suppose that $s_{n}>n$. Then $s_{n+1}-(n+1)=s_{n}+a_{n+1}-(n+1)=s_{n}-(n+1)+\frac{n}{s_{n}}=$ $\frac{s_{n}^{2}-(n+1) s_{n}+n}{s_{n}}=\frac{\left(s_{n}-n\right)\left(s_{n}-1\right)}{s_{n}}>0$. Done.
Now since $a_{n+1}=\frac{n}{s_{n}}<1$ we get $a_{n}<1$ for all $n \geq 2$. Therefore, $s_{n}=2+a_{2}+a_{3}+$ $\cdots+a_{n}<n+1$. Finally, $a_{n}=\frac{n}{s_{n}}>\frac{n}{n+1}$ and $a_{2009}>\frac{2009}{2010}>0.9995$.
