

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

September 2009

Problem:

Let (a_n) be a sequence of real numbers such that $a_1 = 2$ and $a_{n+1} = \frac{n}{a_1 + a_2 + \cdots + a_n}$ for each natural number n. Prove that $a_{2009} > 0.9995$.

Solution:

Let us prove that $S_n = a_1 + a_2 + \dots + a_n > n$ by the method of mathematical induction.

1. If n = 1, then $s_1 = 2 > 1$. 2. Suppose that $s_n > n$. Then $s_{n+1} - (n+1) = s_n + a_{n+1} - (n+1) = s_n - (n+1) + \frac{n}{s_n} = \frac{s_n^2 - (n+1)s_n + n}{s_n} = \frac{(s_n - n)(s_n - 1)}{s_n} > 0$. Done. Now since $a_{n+1} = \frac{n}{s_n} < 1$ we get $a_n < 1$ for all $n \ge 2$. Therefore, $s_n = 2 + a_2 + a_3 + \cdots + a_n < n+1$. Finally, $a_n = \frac{n}{s_n} > \frac{n}{n+1}$ and $a_{2009} > \frac{2009}{2010} > 0.9995$.