

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

June 2009

Problem:

Find all natural numbers a and b such that $a \neq b$ and for some prime p and natural numbers k,n

$$b^{2} + a = p^{k}$$
 and $a^{2} + b = np^{k}$

Solution:

Suppose that b = 1. Then a + 1 divides $a^2 + 1$. Therefore, a + 1 divides 2 and a = 1. Contradiction with $a \neq b$.

Suppose that b > 1 and $b^2 + a = p^k$. Then $a^2 + b \equiv 0 \mod(b^2 + a)$ and $b^2 + a \equiv 0 \mod(b^2 + a)$. Therefore, in $\mod(b^2 + a)$ we have $b = -a^2$ and $b^4 = a^2$. As a result, $b^2 + a$ divides $b^4 + b$. Since $b^4 + b = b(b^3 + 1)$, $gcd(b, b^3 + 1) = 1$ and $b^2 + a = p^k$ there are two possibilities: $b^2 + a$ divides b or $b^2 + a$ divides $b^3 + 1$. The first case is impossible. Thus, $b^2 + a$ divides $b^3 + 1 = (b+1)(b^2 - b + 1)$. Now note that both factors are not divisible by $p^2 + a$, since $b + 1 < b^2 + a$ and $b^2 - b + 1 < b^2$. Therefore, both factors are divisible by p, since $b^2 + a = p^k$. Thus, p divides $gcd(b+1, b^2 - b + 1)$. Since $b^2 - b + 1 \equiv 3 \mod(b+1)$, we get p = 3. As a result, 3^k divides $(b+1)(b^2 - b + 1)$. $k \neq 1$. If k = 2, then b = 2 and a = 5. Suppose that $k \geq 3$. Easy check shows that $b^2 - b + 1$ is not divisible by 9. Therefore, 3^{k-1} divides b + 1. But then $b \geq 3^{k-1} - 1$ or $b^2 \geq (3^{k-1} - 1)^2$. Finally, $3^{k-1} = \frac{b^2 + a}{3} > \frac{(3^{k-1} - 1)^2}{3} > 3^{k-1}$ for $k \geq 3$. Contradiction. The only solution is a = 5, b = 2.