Bilkent University Department of Mathematics

Problem Of The Month

May 2009

Problem:

Let $P(x)$ be a polynomial of degree 2009 such that $|P(x)| \leq 1$ for all $x \in[0,2009]$.
Prove that $P(-1) \leq 2^{2010}-1$.

Solution:

We prove more general statement:
Proposition: If $P(x)$ is a polynomial of degree n such that $|P(x)| \leq 1$ for all $x \in[0, n]$, then $P(-1) \leq 2^{n+1}-1$.

Proof by induction with respect to n :

1. $n=0$ and $P(x)=$ const. Clear.
2. Suppose that the Proposition is correct for $n=k$. Let $P(x)$ be a polynomial of degree $k+1$. Consider the polynomial $Q(x)=P(x)-P(x+1)$ of degree k. Note that $|Q(x)| \leq 2$ for all $x \in[0, k]$ and the polynomial $\frac{1}{2} Q(x)$ satisfies the conditions. By inductive hypothesis $\frac{1}{2} Q(-1) \leq 2^{k+1}-1$. Therefore, $P(-1)=P(0)+Q(-1) \leq$ $1+2\left(2^{k+1}-1\right)=2^{k+2}-1$. Done.
