

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

February 2009

Problem:

Find all prime numbers p such that $\frac{11^{p-1}-1}{p}$ is a perfect square.

Solution:

 $\begin{array}{l} p=2 \text{ is not a solution}: \ \frac{11^{2-1}-1}{2}=5.\\ p=3 \text{ is not a solution}: \ \frac{11^{3-1}-1}{3}=40.\\ \text{Suppose that } p>3 \text{ and } \ \frac{11^{p-1}-1}{p}=a^2. \text{ Let us show that } p=6k+1. \text{ Indeed},\\ pa^2=11^{p-1}-1=(11^2-1)(11^{p-3}+11^{p-5}+\cdots+11+1). \text{ Since } 11^2-1=3\cdot 4\cdot 10,\\ 3 \text{ divides } 11^{p-3}+11^{p-5}+\cdots+1 \text{ and consequently } p=6k+1. \text{ Now our equation has the form } 11^{6k}-1=pa^2. \text{ Note that } 11^{6k}-1=(11^{3k}-1)(11^{3k}+1) \text{ and } gcd(11^{3k}-1,11^{3k}+1)=2. \text{ Therefore, one of these factors is } 2b^2 \text{ and the other one} \text{ is } 2pc^2. \end{array}$

 $11^{\frac{p-1}{2}} + 1 = 11^{3k} + 1$ can not be in the form $2b^2$, since $2b^2 = 1 \pmod{11}$ has no integer solution. Thus,

 $11^{\frac{p-1}{2}} - 1 = 2b^2$ and $11^{\frac{p-1}{2}} + 1 = 2pc^2$.

Case 1: p = 4l + 1. Then $11^{\frac{p-1}{2}} - 1 = (11^l - 1)(11^l + 1) = 2b^2$. Since $gcd(11^l - 1, 11^l + 1) = 2$ we get

 $11^{l} - 1 = 2m^{2}$ and $11^{l} + 1 = 4s^{2}$ ($11^{l} + 1$ can not be in the form $2m^{2}$). But $11^{l} + 1 = 4s^{2}$ yields $11^{l} = (2s)^{2} - 1^{2}$. Impossible.

Case 2: p = 4k + 3. Since p is also in the form 6l + 1, we conclude that p = 12l + 7. Now $11^{\frac{p-1}{2}} - 1 = 11^{6l+3} - 1 = (11^{2l+1} - 1)(11^{4l+2} + 11^{2l+1} + 1) = 2b^2$. Put 2l + 1 = r. Let us find $gcd(11^{2l+1} - 1, 11^{4l+2} + 11^{2l+1} + 1) = gcd(11^r - 1, 11^{2r} + 11^r + 1)$. Since $(11^{2r} + 11^r + 1) - (11^r - 1) \cdot (integer factor = 11^t + 1) = 3$, then $gcd(11^r - 1, 11^{2r} + 11^r + 1)$ is either 1 or 3. But since r is odd, both numbers are not divisible by 3 and $gcd(11^r - 1, 11^{2r} + 11^r + 1) = 1$. Since $11^{2r} + 11^r + 1$ is odd it must be a perfect square. But $(11^t)^2 < 11^{2r} + 11^r + 1 < (11^t + 1)^2$. Contradiction.

The is no prime p such that $\frac{11^{p-1}-1}{p}$ is a perfect square.