

Bilkent University
Department of Mathematics

Problem Of The Month

February 2009

Problem:

Find all prime numbers p such that $\frac{11^{p-1}-1}{p}$ is a perfect square.

Solution:

$p=2$ is not a solution : $\frac{11^{2-1}-1}{2}=5$.
$p=3$ is not a solution : $\frac{11^{3-1}-1}{3}=40$.
Suppose that $p>3$ and $\frac{11^{p-1}-1}{p}=a^{2}$. Let us show that $p=6 k+1$. Indeed, $p a^{2}=11^{p-1}-1=\left(11^{2}-1\right)\left(11^{p-3}+11^{p-5}+\cdots+11+1\right)$. Since $11^{2}-1=3 \cdot 4 \cdot 10$, 3 divides $11^{p-3}+11^{p-5}+\cdots+1$ and consequently $p=6 k+1$. Now our equation has the form $11^{6 k}-1=p a^{2}$. Note that $11^{6 k}-1=\left(11^{3 k}-1\right)\left(11^{3 k}+1\right)$ and $\operatorname{gcd}\left(11^{3 k}-1,11^{3 k}+1\right)=2$. Therefore, one of these factors is $2 b^{2}$ and the other one is $2 p c^{2}$.
$11^{\frac{p-1}{2}}+1=11^{3 k}+1$ can not be in the form $2 b^{2}$, since $2 b^{2}=1(\bmod 11)$ has no integer solution. Thus,
$11^{\frac{p-1}{2}}-1=2 b^{2}$ and $11^{\frac{p-1}{2}}+1=2 p c^{2}$.
Case 1: $p=4 l+1$. Then $11^{\frac{p-1}{2}}-1=\left(11^{l}-1\right)\left(11^{l}+1\right)=2 b^{2}$. Since $\operatorname{gcd}\left(11^{l}-\right.$ $\left.1,11^{l}+1\right)=2$ we get
$11^{l}-1=2 m^{2}$ and $11^{l}+1=4 s^{2}\left(11^{l}+1\right.$ can not be in the form $\left.2 m^{2}\right)$. But $11^{l}+1=4 s^{2}$ yields $11^{l}=(2 s)^{2}-1^{2}$. Impossible.

Case 2: $p=4 k+3$. Since p is also in the form $6 l+1$, we conclude that $p=12 l+7$. Now $11^{\frac{p-1}{2}}-1=11^{6 l+3}-1=\left(11^{2 l+1}-1\right)\left(11^{4 l+2}+11^{2 l+1}+1\right)=2 b^{2}$. Put $2 l+1=r$. Let us find $\operatorname{gcd}\left(11^{2 l+1}-1,11^{4 l+2}+11^{2 l+1}+1\right)=\operatorname{gcd}\left(11^{r}-1,11^{2 r}+11^{r}+1\right)$. Since $\left(11^{2 r}+11^{r}+1\right)-\left(11^{r}-1\right) \cdot\left(\right.$ integer factor $\left.=11^{t}+1\right)=3$, then $\operatorname{gcd}\left(11^{r}-1,11^{2 r}+\right.$ $11^{r}+1$) is either 1 or 3 . But since r is odd, both numbers are not divisible by 3 and $\operatorname{gcd}\left(11^{r}-1,12^{2 r}+11^{r}+1\right)=1$. Since $11^{2 r}+11^{r}+1$ is odd it must be a perfect square. But $\left(11^{t}\right)^{2}<11^{2 r}+11^{r}+1<\left(11^{t}+1\right)^{2}$. Contradiction.

The is no prime p such that $\frac{11^{p-1}-1}{p}$ is a perfect square.

