

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

December 2008

Problem:

Find all prime numbers p such that $\frac{7^{p-1}-1}{p}$ is a perfect square.

Solution:

$$p = 2$$
 is not a solution : $\frac{7^{2-1} - 1}{2} = 3$.
 $p = 3$ is a solution : $\frac{7^{3-1} - 1}{3} = 4^2$.

Suppose that p > 3. Let us show that p = 6k + 1. Indeed, $pa^2 = 7^{p-1} - 1 = (7^2 - 1)(7^{p-3} + 7^{p-5} + \dots + 1)$. Since $7^2 - 1 = 3 \cdot 4^2$, 3 divides $7^{p-3} + 7^{p-5} + \dots + 1$ and consequently p = 6k + 1. Now our equation has the form $7^{6k} - 1 = pa^2$. Note that $7^{6k} - 1 = (7^{3k} - 1)(7^{3k} + 1)$ and $gcd(7^{3k} - 1, 7^{3k} + 1) = 2$. Therefore, one of these factors is $2b^2$ and the other one is $2pc^2$. $7^{3k} - 1$ can not be in the form $2b^2$, since $2b^2 = -1(mod7)$ has no integer solution (2 is a quadratic residue mod7). Thus,

$$7^{3k} + 1 = 2b^2.$$

Now $7^{3k} + 1 = (7^k + 1)(7^{2k} - 7^k + 1)$ and $gcd(7^k + 1, 7^{2k} - 7^k + 1) = gcd(7^k + 1, 7^{2k} - 7^k + 1 - (7^k + 1)(7^k - 2)) = gcd(7^k + 1, 3) = 1$. Since $7^k + 1$ is even, $7^{2k} - 7^k + 1$ is a perfect square. A contradiction, since $7^{2k} - 7^k + 1$ lies strongly between two perfect squares $(7^k - 1)^2$ and $(7^k)^2$.

The only solution is p = 3.