

Bilkent University Department of Mathematics

Problem Of The Month

December 2008

Problem:

Find all prime numbers p such that $\frac{7^{p-1}-1}{p}$ is a perfect square.

Solution:

$p=2$ is not a solution : $\frac{7^{2-1}-1}{2}=3$.
$p=3$ is a solution : $\frac{7^{3-1}-1}{3}=4^{2}$.
Suppose that $p>3$. Let us show that $p=6 k+1$. Indeed, $p a^{2}=7^{p-1}-1=$ $\left(7^{2}-1\right)\left(7^{p-3}+7^{p-5}+\cdots+1\right)$. Since $7^{2}-1=3 \cdot 4^{2}, 3$ divides $7^{p-3}+7^{p-5}+\cdots+1$ and consequently $p=6 k+1$. Now our equation has the form $7^{6 k}-1=p a^{2}$. Note that $7^{6 k}-1=\left(7^{3 k}-1\right)\left(7^{3 k}+1\right)$ and $\operatorname{gcd}\left(7^{3 k}-1,7^{3 k}+1\right)=2$. Therefore, one of these factors is $2 b^{2}$ and the other one is $2 p c^{2} .7^{3 k}-1$ can not be in the form $2 b^{2}$, since $2 b^{2}=-1(\bmod 7)$ has no integer solution (2 is a quadratic residue mod7). Thus,

$$
7^{3 k}+1=2 b^{2}
$$

Now $7^{3 k}+1=\left(7^{k}+1\right)\left(7^{2 k}-7^{k}+1\right)$ and $\operatorname{gcd}\left(7^{k}+1,7^{2 k}-7^{k}+1\right)=\operatorname{gcd}\left(7^{k}+1,7^{2 k}-\right.$ $\left.7^{k}+1-\left(7^{k}+1\right)\left(7^{k}-2\right)\right)=\operatorname{gcd}\left(7^{k}+1,3\right)=1$. Since $7^{k}+1$ is even, $7^{2 k}-7^{k}+1$ is a perfect square. A contradiction, since $7^{2 k}-7^{k}+1$ lies strongly between two perfect squares $\left(7^{k}-1\right)^{2}$ and $\left(7^{k}\right)^{2}$.

The only solution is $p=3$.

