Bilkent University Department of Mathematics

Problem Of The Month

November 2008

Problem:

An integer sequence $\left\{a_{1}, a_{2}, \ldots\right\}$ is said to be white, if for all $n>2008, a_{n}$ is equal to the total number of those indices $i, 1 \leq i \leq n-1$ for which $a_{i}+i \geq n$. An integer L is an important element of the sequence $\left\{a_{1}, a_{2}, \ldots\right\}$, if $a_{j}=L$ for infinitely many different indices j. What is the maximal possible number of important elements of a white sequence?

Solution:

Define $K=\max \left\{a_{1}, a_{2}, \ldots, a_{2008}, 2008\right\}$. Let us prove that $a_{n} \leq K$ for all n :

1. If $1 \leq n \leq 2009$ then $a_{n}=\sum_{i: 1 \leq i \leq n-1, a_{i}+i \geq n} 1 \leq \sum_{i: 1 \leq i \leq 2008} 1 \leq 2008$.
2. Suppose that $a_{n} \leq K$ for all $1 \leq n \leq k$. Then

$$
a_{k+1}=\sum_{i: 1 \leq i \leq k, a_{i}+i \geq k+1} 1 \leq \sum_{i: 1 \leq i \leq k, i \geq k+1-K} 1 \leq k-(k+1-K)+1=K
$$

Now note that
a. the value of a_{n} is determined only by the preceding K terms: for $a_{n-j}+n-j \geq n$ implies that $j \leq K$.
b. there are only finite number of possible blocks consisting of K consecutive terms.

Therefore, any white sequence becomes periodic starting from some index l, and consequently any white sequence has at least one important element. Let M be the maximal important element of the sequence: $M=\max \left\{a_{i}, i>l\right\}$.
From now all indices are supposed to be greater than l. Note that if $a_{i}=M$ then $a_{i-M}=M$, since a_{i} is determined by the preceding M terms.

We prove that for all $i>l, a_{i}$ takes at most 2 values: either M or $M-1$. On the contrary, suppose that some terms are less than $M-1$. Consider indices n and $k>n$ such that $a_{n+M}=M, a_{n}=M$ and $a_{k}<M-1$ such that $k-n$ is minimal . Then $a_{k-1}<M$ and the inequalities $a_{k}<M-1$ and $a_{k-1}<M$ imply that $a_{k+M-1}<M-1$. We came to the contradiction with the minimality of $k-n$, since the difference between indices $k+M-1$ and $n+M$ is less than $k-n$ but $a_{n+M}=M, a_{k+M-1}<M-1$.

The sequence starting with $a_{1}=a_{2}=\cdots=a_{2006}=0, a_{2007}=2, a_{2008}=1$ is a white sequence with two important elements 1 and 2 .

