

Bilkent University Department of Mathematics

Problem Of The Month

October 2008

Problem:

Let \mathbb{Z} be the set of all integers. Prove that there is no function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for any $m, n \in \mathbb{Z}$

$$
\begin{equation*}
f(n)-f(n+f(m))=m \tag{1}
\end{equation*}
$$

Solution:

f (if exists) takes different values at different points: $f\left(n+f\left(m_{1}\right)\right)=f(n)-m_{1}$ and $f\left(n+f\left(m_{2}\right)\right)=f(n)-m_{2}$. Therefore, $f\left(m_{1}\right)=f\left(m_{2}\right)$ implies $m_{1}=m_{2}$.
f takes all integer values: put $m=0$ in (1): $f(n+f(0))=f(n)$. Thus, $f(0)=0$. Again put $n=0$ in (1): $f(f(m))=-m$.

Since $f(n+m)=f(n+f(f(-m)))=f(n)-f(f(-m))=f(n)+f((f(f-m)))=f(n)+f(m)$ we have $f(n)=c n$. Put $f(n)=c n$ in $f(f(m))=-m: c^{2} n=-n$ or $c^{2}=-1$. Done.

