

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2008

Problem:

Let \mathbb{Z} be the set of all integers. Prove that there is no function $f:\mathbb{Z}\to\mathbb{Z}$ such that for any $m,n\in\mathbb{Z}$

(1)
$$f(n) - f(n+f(m)) = m$$

Solution:

f (if exists) takes different values at different points: $f(n + f(m_1)) = f(n) - m_1$ and $f(n + f(m_2)) = f(n) - m_2$. Therefore, $f(m_1) = f(m_2)$ implies $m_1 = m_2$.

f takes all integer values: put m = 0 in (1): f(n + f(0)) = f(n). Thus, f(0) = 0. Again put n = 0 in (1): f(f(m)) = -m.

Since f(n+m) = f(n + f(f(-m))) = f(n) - f(f(-m)) = f(n) + f((f(f-m))) = f(n) + f(m)we have f(n) = cn. Put f(n) = cn in f(f(m)) = -m: $c^2n = -n$ or $c^2 = -1$. Done.