Bilkent University Department of Mathematics

Problem Of The Month

September 2008

Problem:

Let a, b, c, d be positive integer numbers satisfying

$$
a=\frac{b^{b}-c^{c}}{d^{d}}
$$

What is the possible minimal value of a ?

Solution:

The answer is $a=3$.
Since a is natural $b \geq c+1$ and $b \geq d+1$. Therefore, $b \geq 2$. If $b=2$ then the only possibility is: $c=d=1$ and $a=3$. Suppose that $b \geq 3$ and $a \leq 2$. Then

$$
b^{b}=a \cdot d^{d}+c^{c} \leq 2 \cdot(b-1)^{b-1}+(b-1)^{b-1}=3(b-1)^{b-1}<3 b^{b-1}
$$

yielding $b<3$. The contradiction shows that the minimal value of a is 3 .

