

Bilkent University Department of Mathematics

## Problem Of The Month

June 2008

## Problem:

Some unit squares of $2008 \times 2008$ square board are colored. Let $(i, j)$ be a unit square belonging to the $i^{\text {th }}$ line and $j^{\text {th }}$ column and $S_{i, j}$ be the set of all colored unit squares $(x, y)$ satisfying $x \leq i$ and $y \leq j$. At the first step in each colored unit square $(i, j)$ we write the number of colored unit squares in $S_{i, j}$. In each step, in each colored unit square $(i, j)$ we write the sum of all numbers written in $S_{i, j}$ in the previous step. Prove that after finite number of steps, all numbers in the colored unit squares will be odd.

## Solution:

Let $f_{(i, j)}$ be the number written on $(i, j)$ in $\bmod 2$. We can suppose that at the $0^{\text {th }}$ step $f_{(i, j)}=1$ for all colored unit squares $(i, j)$. We prove the statement by induction with respect to $n$, the total number of colored unit squares. If $n=1$, then after the first step $f_{(i, j)}=1$ for the only colored unit square $(i, j)$. Suppose that the statement is proved for $n=k$ and consider the case $n=k+1$. Let us define a partial order between colored unit squares: we say that $(i, j) \preceq(k, l)$ if $i \leq k$ and $j \leq k$. Let $(p, q)$ be any maximal element with respect to this order (there is at least one maximal element). The unit square ( $p, q$ ) has no any influence on other colored unit squares at any step. If we remove $(p, q)$, then by inductive hypothesis, after $N$ steps on each of remaining unit squares the number 1 will be written. Therefore, if we do not remove $(p, q)$, after $N$ steps $f_{(i, j)}=1$ for all unit squares except possibly for $f_{(p, q)}$. If $f_{(p, q)}=1$, it is done. Suppose that $f_{(p, q)}=0$. It means that the first $N$ steps have added 1 to $f_{(p, q)}$ and it is changed from 1 to 0 . Therefore, after $2 N$ steps $f_{(i, j)}=1$ for all colored unit squares.

