Bilkent University Department of Mathematics

Problem Of The Month

May 2008

Problem:

Find the minimum of

$$
\frac{1+a+b+c}{3+2 a+b}-\frac{c}{b}
$$

where a, b and c are real numbers such that all roots of the equation $x^{3}-a x^{2}+b x-c=$ 0 are real positive numbers.

Solution:

We prove that the minimum is $\frac{1}{3}$. Let $x_{i}>0$ for $i=1,2,3$ be the roots of the equation $x^{3}-a x^{2}+b x-c=0$. By Vieta's theorem

$$
x_{1}+x_{2}+x_{3}=a, \quad x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}=b, \quad x_{1} x_{2} x_{3}=c .
$$

Then

$$
\begin{gathered}
A=\frac{1+a+b+c}{3+2 a+b}-\frac{c}{b} \\
=\frac{\left(x_{1}+1\right)\left(x_{2}+1\right)\left(x_{3}+1\right)}{\left(x_{1}+1\right)\left(x_{2}+1\right)+\left(x_{2}+1\right)\left(x_{3}+1\right)+\left(x_{1}+1\right)\left(x_{3}+1\right)}-\frac{x_{1} x_{2} x_{3}}{x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}} \\
=\frac{1}{\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\frac{1}{x_{3}+1}}-\frac{1}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}}=\frac{\frac{1}{x_{1}\left(x_{1}+1\right)}+\frac{1}{\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}\right)\left(\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\frac{1}{x_{3}\left(x_{3}+1\right)}\right.}}{x_{3}+1}
\end{gathered}
$$

Without loss of generality we can assume that $0<x_{1} \leq x_{2} \leq x_{3}$. Then
$\frac{1}{x_{1}} \geq \frac{1}{x_{2}} \geq \frac{1}{x_{3}}>0$ and $\frac{1}{x_{1}+1} \geq \frac{1}{x_{2}+1} \geq \frac{1}{x_{3}+1}>0$.
By Chebyshev's inequality
$\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}\right)\left(\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\frac{1}{x_{3}+1}\right) \leq \frac{1}{3}\left(\frac{1}{x_{1}\left(x_{1}+1\right)}+\frac{1}{x_{2}\left(x_{2}+1\right)}+\frac{1}{x_{3}\left(x_{3}+1\right)}\right)$
Therefore, $A \geq 3$. The minimum $1 / 3$ of A is reached for $x_{1}=x_{2}=x_{3}=t>0$ or $a=3 t, b=3 t^{2}, c=t^{3}$.

