Bilkent University Department of Mathematics

Problem Of The Month

April 2008

Problem:

The sequence $\left\{x_{n}\right\}$ is defined by $x_{1}=a, x_{2}=b$ and $x_{n}=2008 x_{n-1}-x_{n-2}$ for all $n \geq 2$. Prove that there are positive integers a and b such that for all $n \geq 1$

$$
1+2006 x_{n} x_{n+1}
$$

is a perfect square.

Solution:

We prove prove that if $a=1$ and $b=2008$ then $1+2006 x_{n} x_{n+1}$ is a perfect square. Let us prove that for all $n \geq 1$

$$
\begin{equation*}
x_{n}^{2}+x_{n+1}^{2}-1=2008 x_{n} x_{n+1} . \tag{1}
\end{equation*}
$$

Proof by induction:

1. $n=1: 1^{1}+2008^{2}-1=2008 \cdot 1 \cdot 2008$.
2. Suppose (1) is held for $n=k: x_{k}^{2}+x_{k+1}^{2}-1=2008 x_{k} x_{k+1}=x_{k} \cdot 2008 x_{k+1}=$ $x_{k} \cdot\left(x_{k}+x_{k+2}\right)=x_{k}^{2}+x_{k} x_{k+2}$.
Then $x_{k+1}^{2}-1=x_{k} x_{k+2}=\left(2008 x_{k+1}-x_{k+2}\right) x_{k+2}=2008 x_{k+1} x_{k+2}-x_{k+2}^{2}$. Therefore, $x_{k+1}^{2}+x_{k+2}^{2}-1=2008 x_{k+1} x_{k+2}$ and (1) is held for $n=k+1$.

Now we get $1+2006 x_{n} x_{n+1}=1+2008 x_{n} x_{n+1}-2 x_{n} x_{n+1}=x_{n}^{2}+x_{n+1}^{2}-2 x_{n} x_{n+1}=$ $\left(x_{n+1}-x_{n}\right)^{2}$. Done.

