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Problem:
Let T be a set of natural numbers such that for any a, b ∈ T , a2 − ab + b2 divides
a2b2. Prove that the set T is finite.

Solution:

Let d be the greatest common divisor of a and b: d = (a, b). Then a = da1 and
b = db1 and (a1, b1) = 1. Since d2(a2
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1 divides d2 or a2−ab+b2 divides d4. Since d ≤ a we get a2−ab+b2 ≤ a4.
Let us fix any a ∈ T . Then a2 − ab + b2 ≤ a4 implies that b can take only a finite
number of distinct values. Done.


