

Bilkent University Department of Mathematics

Problem Of The Month

March 2008

Problem:

Let T be a set of natural numbers such that for any $a, b \in T, a^{2}-a b+b^{2}$ divides $a^{2} b^{2}$. Prove that the set T is finite.

Solution:

Let d be the greatest common divisor of a and $b: d=(a, b)$. Then $a=d a_{1}$ and $b=d b_{1}$ and $\left(a_{1}, b_{1}\right)=1$. Since $d^{2}\left(a_{1}^{2}-a_{1} b_{1}+b_{1}^{2}\right)$ divides $d^{4} a_{1}^{2} b_{1}^{2}$ we get $a_{1}^{2}-a_{1} b_{1}+b_{1}^{2}$ divides $d^{2} a_{1}^{2} b_{1}^{2} . \quad\left(a_{1}, b_{1}\right)=1$ implies that $\left(a_{1}^{2}-a_{1} b_{1}+b_{1}^{2}, a_{1} b_{1}\right)=1$. Therefore, $a_{1}^{2}-a_{1} b_{1}+b_{1}^{2}$ divides d^{2} or $a^{2}-a b+b^{2}$ divides d^{4}. Since $d \leq a$ we get $a^{2}-a b+b^{2} \leq a^{4}$. Let us fix any $a \in T$. Then $a^{2}-a b+b^{2} \leq a^{4}$ implies that b can take only a finite number of distinct values. Done.

