Bilkent University Department of Mathematics

Problem Of The Month

February 2008

Problem:

Suppose that the polynomial $P(x)=x^{2008}+a_{2007} x^{2007}+a_{2006} x^{2006}+\cdots+a_{1} x+a_{0}$ has 2008 real roots, while the polynomial $P(Q(x))$, where $Q(x)=\frac{x^{2}}{4}+x-1$ has no real root. Prove that $a_{0}+a_{1}+\cdots+a_{2007}>3^{2008}-1$.

Solution:

Suppose that roots of the polynomial $P(x)$ are $x_{1}, x_{2}, \ldots, x_{2008}$. Then $P(x)=\prod_{i=1}^{2008}\left(x-x_{i}\right)$ and $P(Q(x))=\prod_{i=1}^{2008}\left(Q(x)-x_{i}\right)$. Therefore, for any $x, Q(x)=\frac{x^{2}}{4}+x-1 \neq x_{i}$ or $x_{i}<-2$. Now $a_{0}+a_{1}+\cdots+a_{2007}=P(1)-1=\prod_{i=1}^{2008}\left(1-x_{i}\right)-1 \geq 3^{2008}-1$.
Done.

