Bilkent University Department of Mathematics

Problem Of The Month

January 2008

Problem:

Find all functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(2007)=2008$ and for each $x, y \in \mathbf{R}$

$$
f(4 x y)=2 y(f(x+y)+f(x-y)) .
$$

Solution:

Let us prove that the only solution is $f(x)=\frac{2008}{2007} x$.
$y=0$ in our equation gives $f(0)=0$ and $x=0$ yields $0=f(y)+f(-y)$, so the function f is odd. Since $f(4 s t)=f(4 t s)$ we get $2 t(f(s+t)+f(s-t))=$ $2 s(f(s+t)-f(s-t))$ or

$$
(s-t) f(s+t)=(s+t) f(s-t)
$$

We take $t=2007-s$ and use $f(2007)=2008$:

$$
(2 s-2007) 2008=2007 f(2 s-2007) .
$$

Substitution $2 s-2007=x$ gives $f(x)=\frac{2008}{2007} x$. Finally, we verify that the function $f(x)=\frac{2008}{2007} x$ satisfies the equation.

