

Bilkent University Department of Mathematics

Problem Of The Month

December 2007

Problem:

Let $\left\{a_{n}\right\}$ be an increasing sequence of positive integer numbers. The term a_{k} of this sequence is said to be good if $a_{k}=t_{l} a_{l}+t_{m} a_{m}$ for some indices l and m and some positive integer numbers t_{l} and t_{m}. Prove that all but finite number of terms of this sequence are good.

Solution:

Suppose that a_{k} and $a_{l} ; k>l$, are two terms of the sequence $\left\{a_{n}\right\}$ having the same remainder modulo a_{1} :

$$
a_{k}=a_{l}+b \cdot a_{1}, b>0,
$$

meaning the term a_{k} is good. Therefore, no two different not good terms may have the same remainder modulo a_{1}. Thus, the total number of not good terms is at most a_{1}.

