

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2007

Problem:

Find all non-negative rational solutions of the equation:

Solution:

The answer: (x, y) = (0, 0) or (k^{k-1}, k^k) , where k is a natural number.

Let (x, y) be a rational nonzero solution. Consider a substitution $t = \frac{y}{x}$. Then $x^{tx}(tx)^x = (tx)^{(tx)}$ or $x = t^{t-1}$. If t - 1 = k then $x = (k + 1)^k$. Let us show that k is a natural number. Take $x = \frac{m}{n}$ and $k = \frac{p}{q}$ where both fractions are irreducible: (m, n) = 1 and (p, q) = 1. Then our equation becomes

$$m^q q^p = n^q (p+q)^p$$

Since (m, n) = 1, $n^q | q^p$ and since (p, q) = 1, $((p+q)^p, q^p) = (p+q, q)^p = (p, q)^p = 1$. Therefore, $q^p | n^q$ and as a result, $q^p = n^q$. Suppose that q > 1. Then in the prime decomposition of q^p each factor has a power divisible by both p and q, so divisible by pq. Therefore, in the prime decomposition of q each factor has a power divisible by q. Contradiction, since $q < 2^q$. Thus, q = 1 and $x = k^{k-1}$ and $y = k^k$. Straightforward check shows that (0,0) and (k^{k-1}, k^k) are solutions. Done.

$$x^y \cdot y^x = y^y$$