

Bilkent University Department of Mathematics

Problem Of The Month

October 2007

Problem:

Find all non-negative rational solutions of the equation:

$$
x^{y} \cdot y^{x}=y^{y}
$$

Solution:

The answer: $(x, y)=(0,0)$ or $\left(k^{k-1}, k^{k}\right)$, where k is a natural number.
Let (x, y) be a rational nonzero solution. Consider a substitution $t=\frac{y}{x}$. Then $x^{t x}(t x)^{x}=(t x)^{(t x)}$ or $x=t^{t-1}$. If $t-1=k$ then $x=(k+1)^{k}$. Let us show that k is a natural number. Take $x=\frac{m}{n}$ and $k=\frac{p}{q}$ where both fractions are irreducible: $(m, n)=1$ and $(p, q)=1$. Then our equation becomes

$$
m^{q} q^{p}=n^{q}(p+q)^{p}
$$

Since $(m, n)=1, n^{q} \mid q^{p}$ and since $(p, q)=1,\left((p+q)^{p}, q^{p}\right)=(p+q, q)^{p}=(p, q)^{p}=1$. Therefore, $q^{p} \mid n^{q}$ and as a result, $q^{p}=n^{q}$. Suppose that $q>1$. Then in the prime decomposition of q^{p} each factor has a power divisible by both p and q, so divisible by $p q$. Therefore, in the prime decomposition of q each factor has a power divisible by q. Contradiction, since $q<2^{q}$. Thus, $q=1$ and $x=k^{k-1}$ and $y=k^{k}$. Straightforward check shows that $(0,0)$ and $\left(k^{k-1}, k^{k}\right)$ are solutions. Done.

