Bilkent University Department of Mathematics

Problem Of The Month

September 2007

Problem: Find the smallest real number A such that for all triangle angles α, β and γ the inequality

$$
\sin ^{2} \alpha+\sin ^{2} \beta-\cos \gamma \leq A
$$

holds.

Solution:

The answer is $\frac{5}{4}$.
Let us prove that

$$
\begin{equation*}
f=\sin ^{2} \alpha+\sin ^{2} \beta-\cos \gamma<\frac{5}{4} \tag{1}
\end{equation*}
$$

Indeed, $f=2-\cos ^{2} \alpha-\cos ^{2} \beta-\cos \gamma=1-\frac{1}{2}(\cos 2 \alpha+\cos 2 \beta)+\cos (\alpha+\beta)$ $=1-(\cos (\alpha+\beta)(\cos (\alpha-\beta)-1)$
and the inequality (1) is equivalent to

$$
\begin{equation*}
\left(\cos (\alpha+\beta)(1-\cos (\alpha-\beta))<\frac{1}{4}\right. \tag{2}
\end{equation*}
$$

(2) follows from the inequality $a b \leq \frac{(a+b)^{2}}{4}$. Indeed, $\left(\cos (\alpha+\beta)(1-\cos (\alpha-\beta)) \leq \frac{1}{4}(\cos (\alpha+\beta)+1-\cos (\alpha-\beta))^{2}=\frac{1}{4}(1-2 \sin \alpha \sin \beta)^{2}<\frac{1}{4}\right.$, since $0<\sin \alpha \sin \beta<1$ (α, β are triangle angles).
(1) is proved. Now note that if $\gamma=\frac{2 \pi}{3}$ and α approaches to $\frac{\pi}{3}$, then f approaches to $\frac{5}{4}$. Done.

