Bilkent University Department of Mathematics

Problem Of The Month

July-August 2007

Problem: For all positive real numbers a, b, c satisfying $a+b+c=1$, prove the following inequality:

$$
\frac{1}{a b+2 c^{2}+2 c}+\frac{1}{b c+2 a^{2}+2 a}+\frac{1}{c a+2 b^{2}+2 b} \geq \frac{1}{a b+b c+c a}
$$

Solution:

Note that

$$
\begin{equation*}
\frac{1}{a b+2 c^{2}+2 c} \geq \frac{a b}{(a b+b c+c a)^{2}} \tag{1}
\end{equation*}
$$

Indeed, since $a^{2}+b^{2} \geq 2 a b$ and $a+b+c=1$,
$(a b+b c+c a)^{2}=a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}+2 a^{2} b c+2 b^{2} c a+2 c^{2} a b=a^{2} b^{2}+\left(a^{2}+b^{2}\right) c^{2}+$ $2 a b c(a+b+c) \geq a^{2} b^{2}+2 a b c^{2}+2 a b c=a b\left(a b+2 c^{2}+2 c\right)$.

We obtain cyclicly two more inequalities from (1). The sum of these three inequalities gives the required inequality.

