

Bilkent University Department of Mathematics

Problem Of The Month

June 2007

Problem: Determine all prime numbers p such that the total number of positive divisors of $A=p^{2}+1007$ (including 1 and A) is less than 7 .

Solution: The answer is: $p=2$.
If $p=2$, then $A=1011=3 \cdot 337$ has 4 divisors.
If $p=3$, then $A=2^{3} \cdot 127$ has 8 divisors.
If $p>3$, then $A=p^{2}-1+1008=(p-1)(p+1)+24 \cdot 42$. But $(p-1)(p+1)$ is divisible by $2 \cdot 4$ and 3 . Therefore, A has at least 7 divisors: $1,2,3, \frac{A}{6}, \frac{A}{3}, \frac{A}{2}, A$.

