Bilkent University Department of Mathematics

Problem Of The Month

January 2007

Problem: Find the greatest common divisor of natural numbers a and b satisfying

$$
(1+\sqrt{2})^{2007}=a+b \sqrt{2}
$$

Solution: The answer is 1 .
Note that $(1+\sqrt{2})^{2007}(1-\sqrt{2})^{2007}=-1$.
If we expand $(1+\sqrt{2})^{2007}$ and $(1-\sqrt{2})^{2007}$ by Newton's binomial formula we readily see that $(1-\sqrt{2})^{2007}=a-b \sqrt{2}$ since irrational terms of the expansions are terms with odd power of $\sqrt{2}$.
Therefore, $(1+\sqrt{2})^{2007}(1-\sqrt{2})^{2007}=(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2}$. Thus, $a^{2}-2 b^{2}=-1$. Now, if d is a greatest common divisor of a and b, then $d \mid a^{2}$ and $d \mid b^{2}$ and therefore $d \mid\left(a^{2}-2 b^{2}\right)=-1$. Thus, $d=1$.

The problem also has a simple solution by the method of mathematical induction:

Solution 2:

For $n=1,2, \ldots$, define the natural numbers a_{n} and b_{n} by $\quad(1+\sqrt{2})^{n}=a_{n}+b_{n} \sqrt{2}$. We prove that the greatest common divisor of a_{n} and b_{n} is equal to 1 for all $n=$ $1,2, \ldots$.
Clearly, $a_{1}=b_{1}=1$. From

$$
\begin{gathered}
a_{n+1}+b_{n+1} \sqrt{2}=(1+\sqrt{2})^{n+1}=(1+\sqrt{2})^{n}(1+\sqrt{2})=\left(a_{n}+b_{n} \sqrt{2}\right)(1+\sqrt{2}) \\
=a_{n}+2 b_{n}+\left(a_{n}+b_{n}\right) \sqrt{2}
\end{gathered}
$$

it follows that

$$
a_{n+1}=a_{n}+2 b_{n}, \quad b_{n+1}=a_{n}+b_{n}
$$

Now, any common divisor of a_{n+1} and b_{n+1} also divides $2 b_{n+1}-a_{n+1}=a_{n}$ and $a_{n+1}-$ $b_{n+1}=b_{n}$ and so is a common divisor of a_{n} and b_{n}. Therefore, $\operatorname{gcd}\left(a_{n+1}, b_{n+1}\right)=$ 1 whenever $\operatorname{gcd}\left(a_{n}, b_{n}\right)=1$. Since $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$, it follows by induction that $\operatorname{gcd}\left(a_{n}, b_{n}\right)=1$ for all positive integers n. Particularly, $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a_{2007}, b_{2007}\right)=$ 1.

