Bilkent University

Department of Mathematics

Problem Of The Month

December 2006

Problem: Let $\left\{a_{n}\right\}$ be a sequence of natural numbers such that for each $n \geq$ $1 a_{n+1}=\sum_{k=1}^{n} a_{k}^{2}$ and a_{2006} is divisible by 2006. Find the smallest possible value of a_{1}.

Solution: The answer is 472 .
Since $2006=2 \times 17 \times 59, a_{2006}$ must be divisible by 2,17 and 59 .
We will use the following auxiliary
Proposition. The equation $a^{2}+a+1=0 \bmod (p)$ has no integer solutions for $p=17$ and $p=59$.

Proof can be obtained by direct inspection or for example by using of Legendre symbols:
for $p=17$: The equation is equivalent to $a^{2}+a-17 a+1+63=63 \bmod (17)$ or $(a-8)^{2}=12 \bmod (17)$ which is impossible since $\left(\frac{12}{17}\right)=\left(\frac{3}{17}\right)\left(\frac{4}{17}\right)=\left(\frac{3}{17}\right)=\left(\frac{17}{3}\right)=$ $\left(\frac{2}{3}\right)=-1$.
for $p=59$: The equation is equivalent to $a^{2}+a+59 a+1+899=899 \bmod (59)$ or $(a-30)^{2}=14 \bmod (59)$ which is impossible since $\left(\frac{14}{59}\right)=\left(\frac{2}{59}\right)\left(\frac{7}{59}\right)=\left(\frac{59}{7}\right)=\left(\frac{3}{7}\right)=$ -1 . Done.

1 (divisibility by 2). For all $k \geq 3 a_{k}=a_{k-1}^{2}+a_{k-1}=a_{k-1}\left(a_{k-1}+1\right)$. Therefore, for all values of $a_{1} \quad a_{2006}$ is even.

2 (divisibility by 59). Let m be a minimal natural number such that a_{m} is divisible by 59 (since a_{2006} is divisible by $59, m$ is well defined). Suppose that $m \geq 4$. Then $59 \mid a_{m}$ and $59 \wedge a_{m-1}$. Since $a_{m}=a_{m-1}\left(a_{m-1}+1\right)$ we readily have $59 \mid\left(a_{m-1}+1\right)$ or $a_{m-1}=-1 \bmod (59)$. Since $a_{m-1}=a_{m-2}^{2}+a_{m-2}$ and $a_{m-1}=-1 \bmod (59)$ we get an equation $a_{m-2}^{2}+a_{m-2}+1=0 \bmod$ (59). Impossible by the Proposition. Therefore, $m \leq 3$. But $m \neq 3$, since as above $a_{2}=-1 \bmod (59)$ and since $a_{2}=a_{1}^{2}$ we have $a_{1}^{2}=-1 \bmod (59)$, impossible since $59=4 \times 14+3$. Finally, $m \neq 2$, since $59 \mid a_{1}^{2}$ implies that $59 \mid a_{1}$. Thus, a_{1} is divisible by 59 .

3 (divisibility by 17). Let m be a minimal natural number such that a_{m} is divisible by 17 (since a_{2006} is divisible by 17, m is well defined). Suppose that $m \geq 4$. Then $17 \mid a_{m}$ and $17 \backslash a_{m-1}$. Since $a_{m}=a_{m-1}\left(a_{m-1}+1\right)$ we readily have $17 \mid\left(a_{m-1}+1\right)$ or $a_{m-1}=-1 \bmod (17)$. Since $a_{m-1}=a_{m-2}^{2}+a_{m-2}$ and $a_{m-1}=-1 \bmod (17)$ we get an equation $a_{m-2}^{2}+a_{m-2}+1=0 \bmod (59)$. Impossible by the Proposition. Therefore, $m \leq 3 . m \neq 2$, since $17 \mid a_{1}^{2}$ implies that $17 \mid a_{1}$. If $m=1$, then $a_{1} \geq 17 \times 59=1003$. If $m=3$, then $a_{3}=a_{1}^{2}+a_{2}^{2}$ and $a_{2}=-1 \bmod (17)$ imply that $a_{1}= \pm 4 \bmod (17)$.

As a result, $a_{1}=59 l$. Therefore, $a_{1}=8 l= \pm 4 \bmod$ (17). The minimal natural solution of the last equation is $l=8$. Thus, $a_{1} \geq 59 \times 8=472$. Now we note that $a_{1}=472$ satisfies the condition, since starting $n \geq 3$ all terms of the sequence are divisible by 2006 .

