

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

December 2006

Problem: Let $\{a_n\}$ be a sequence of natural numbers such that for each $n \ge 1$ $a_{n+1} = \sum_{k=1}^n a_k^2$ and a_{2006} is divisible by 2006. Find the smallest possible value of a_1 .

Solution: The answer is 472.

Since $2006 = 2 \times 17 \times 59$, a_{2006} must be divisible by 2, 17 and 59.

We will use the following auxiliary

Proposition. The equation $a^2 + a + 1 = 0 \mod (p)$ has no integer solutions for p = 17 and p = 59.

Proof can be obtained by *direct inspection* or for example by using of Legendre symbols:

for p = 17: The equation is equivalent to $a^2 + a - 17a + 1 + 63 = 63 \mod (17)$ or $(a - 8)^2 = 12 \mod (17)$ which is impossible since $(\frac{12}{17}) = (\frac{3}{17})(\frac{4}{17}) = (\frac{3}{17}) = (\frac{17}{3}) = (\frac{2}{3}) = -1$.

for p = 59: The equation is equivalent to $a^2 + a + 59a + 1 + 899 = 899 \mod (59)$ or $(a - 30)^2 = 14 \mod (59)$ which is impossible since $(\frac{14}{59}) = (\frac{2}{59})(\frac{7}{59}) = (\frac{59}{7}) = (\frac{3}{7}) = -1$. Done.

1 (divisibility by 2). For all $k \ge 3$ $a_k = a_{k-1}^2 + a_{k-1} = a_{k-1}(a_{k-1}+1)$. Therefore, for all values of a_1 a_{2006} is even.

2 (divisibility by 59). Let m be a minimal natural number such that a_m is divisible by 59 (since a_{2006} is divisible by 59, m is well defined). Suppose that $m \ge 4$. Then $59|a_m$ and 59 $/a_{m-1}$. Since $a_m = a_{m-1}(a_{m-1} + 1)$ we readily have $59|(a_{m-1} + 1)$ or $a_{m-1} = -1 \mod (59)$. Since $a_{m-1} = a_{m-2}^2 + a_{m-2}$ and $a_{m-1} = -1 \mod (59)$ we get an equation $a_{m-2}^2 + a_{m-2} + 1 = 0 \mod (59)$. Impossible by the Proposition. Therefore, $m \le 3$. But $m \ne 3$, since as above $a_2 = -1 \mod (59)$ and since $a_2 = a_1^2$ we have $a_1^2 = -1 \mod (59)$, impossible since $59 = 4 \times 14 + 3$. Finally, $m \ne 2$, since $59|a_1^2$ implies that $59|a_1$. Thus, a_1 is divisible by 59.

3 (divisibility by 17). Let m be a minimal natural number such that a_m is divisible by 17 (since a_{2006} is divisible by 17, m is well defined). Suppose that $m \ge 4$. Then 17 $|a_m$ and 17 $/|a_{m-1}$. Since $a_m = a_{m-1}(a_{m-1} + 1)$ we readily have 17 $|(a_{m-1} + 1)$ or $a_{m-1} = -1 \mod (17)$. Since $a_{m-1} = a_{m-2}^2 + a_{m-2}$ and $a_{m-1} = -1 \mod (17)$ we get an equation $a_{m-2}^2 + a_{m-2} + 1 = 0 \mod (59)$. Impossible by the Proposition. Therefore, $m \le 3$. $m \ne 2$, since $17|a_1^2$ implies that $17|a_1$. If m = 1, then $a_1 \ge 17 \times 59 = 1003$. If m = 3, then $a_3 = a_1^2 + a_2^2$ and $a_2 = -1 \mod (17)$ imply that $a_1 = \pm 4 \mod (17)$.

As a result, $a_1 = 59l$. Therefore, $a_1 = 8l = \pm 4 \mod (17)$. The minimal natural solution of the last equation is l = 8. Thus, $a_1 \ge 59 \times 8 = 472$. Now we note that $a_1 = 472$ satisfies the condition, since starting $n \ge 3$ all terms of the sequence are divisible by 2006.