Bilkent University Department of Mathematics

Problem Of The Month

October 2006

Problem:

Let x_{1}, x_{2}, x_{3} and x_{4} be real numbers satisfying the following equations:
$x_{1}+x_{2}+x_{3}+x_{4}=0$
and
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1$.
Find the maximal possible value of the expression $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}$.

Solution:

The answer is $\frac{\sqrt{3}}{3}$.
By substituting $x_{4}=-\left(x_{1}+x_{2}+x_{3}\right)$ into $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1$ we get $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+$ $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=\frac{1}{2}$. Since $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \leq x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ (Cauchy-Schwarz inequality for vectors $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(x_{2}, x_{3}, x_{1}\right)$) we readily get $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq \frac{1}{4}$. Therefore, $x_{4}^{2}=1-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \leq 1-\frac{1}{4}=\frac{3}{4}$ or $-\frac{\sqrt{3}}{2} \leq x_{4} \leq \frac{\sqrt{3}}{2}$. By symmetry,

$$
\begin{equation*}
-\frac{\sqrt{3}}{2} \leq x_{i} \leq \frac{\sqrt{3}}{2} \tag{1}
\end{equation*}
$$

for each $i=1,2,3,4$.

Denote $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}$ by A. Then

$$
A=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-\left(x_{1}+x_{2}+x_{3}\right)^{3}=-3\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) .
$$

Let us consider the signs of three expressions: $\left(x_{1}+x_{2}\right),\left(x_{1}+x_{3}\right)$ and $\left(x_{2}+x_{3}\right)$ (if any one of them is equal to zero then $A=0$). If all three expressions are positive or exactly one of them is positive, then $A<0$.

If exactly two expressions are positive, say $\left(x_{1}+x_{2}\right)<0,\left(x_{2}+x_{3}\right)>0$ and $\left(x_{1}+x_{3}\right)>0$ then $A=-3\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)=3\left(-x_{1}-x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) \leq$ $3\left(\frac{-x_{1}-x_{2}+x_{1}+x_{3}+x_{2}+x_{3}}{3}\right)^{3}=\frac{8}{9} x_{3}^{3} \leq \frac{\sqrt{3}}{3}$ (by AM-GM inequality and by (1)).

If all three expressions are negative, then $A=-3\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)=3\left(-x_{1}-\right.$ $\left.x_{2}\right)\left(-x_{1}-x_{3}\right)\left(-x_{2}-x_{3}\right) \leq 3\left(\frac{-x_{1}-x_{2}-x_{1}-x_{3}-x_{2}-x_{3}}{3}\right)^{3}=3\left(\frac{-2\left(x_{1}+x_{2}+x_{3}\right)}{3}\right)^{3}$ $=\frac{8}{9} x_{4}^{3} \leq \frac{\sqrt{3}}{3}$ (by AM-GM inequality and by (1)).
Now we note that at $x_{1}=\frac{\sqrt{3}}{2}, x_{2}=x_{3}=x_{4}=-\frac{\sqrt{3}}{2} A=\frac{\sqrt{3}}{3}$.

