Bilkent University Department of Mathematics

Problem Of The Month

July-August 2006

Problem: Find the minimum of the expression

$$
a^{4}+b^{4}+c^{4}-3 a b c
$$

if a, b, c are real numbers satisfying the conditions: $a \geq 1$ and $a+b+c=0$.

Solution: The answer is $\frac{3}{8}$.
First of all, we prove two auxiliary inequalities:

1. $b c \leq \frac{a^{2}}{4}$

Proof: Since $-a=b+c$, it is equivalent to $b c \leq \frac{b^{2}+c^{2}+2 b c}{4}$ or $(b-c)^{2} \geq 0$. Done.
2. $b^{4}+c^{4} \geq \frac{a^{4}}{8}$.

Proof: Since $-a=b+c$, it is equivalent to
$8 b^{4}+8 c^{4} \geq b^{4}+4 b^{3} c+6 b^{2} c^{2}+4 b c^{3}+c^{4}$, or
$4 b^{4}+4 c^{4}-4 b c^{3}-4 b^{3} c+3 b^{4}+3 c^{4}-6 b^{2} c^{2}$ or
$4\left(b^{3}-c^{3}\right)(b-c)+3\left(b^{2}-c^{2}\right)^{2} \geq 0$,
which is true (the signs of $b^{3}-c^{3}$ and $b-c$ are the same). Done.
Due to 1 and 2

$$
a^{4}+b^{4}+c^{4}-3 a b c \geq a^{4}+\frac{a^{4}}{8}-3 \frac{a^{2}}{4}=\frac{3}{4} a^{2}\left(\frac{3}{2} a^{2}-1\right) \geq \frac{3}{8}
$$

since the function $f(x)=\frac{3}{4} x^{2}\left(\frac{3}{2} x^{2}-1\right)$ is strictly increasing on $[1, \infty)$ interval and it takes its minimum at $x=1$. If $a=1, b=c=-\frac{1}{2}$ the value of $a^{4}+b^{4}+c^{4}-3 a b c$ is exactly $\frac{3}{8}$. Done.

