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Problem: Find the minimum of the expression

a* + bt + ¢ — 3abe

if a, b, c are real numbers satisfying the conditions: a > 1 and a + b+ ¢ = 0.

Solution: The answer is %.

First of all, we prove two auxiliary inequalities:

1. be < “Z
Proof: Since —a = b+ ¢, it is equivalent to

b+ + 20
be < +CT+C or (b —c)* > 0. Done.

2. b4—|—c42%.

Proof: Since —a = b+ ¢, it is equivalent to

8b* + 8¢t > bt + 4b3c + 6b%c? + 4bc® + ¢, or

4b* + 4¢* — 4bc® — 4b3c + 3b* + 3¢t — 6b%c? or

4(6% — ) (b —¢) + 3(b* — ¢?)* > 0,

which is true (the signs of % — ¢* and b — ¢ are the same). Done.

Due to 1 and 2
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since the function f(z) = 32?(32? — 1) is strictly increasing on [1,00) interval and
it takes its minimum at x = 1. If a=1,b=c= —% the value of a* + b* + ¢* — 3abe

is exactly g. Done.



