

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

July-August 2006

Problem: Find the minimum of the expression

$$a^4 + b^4 + c^4 - 3abc$$

if a, b, c are real numbers satisfying the conditions: $a \ge 1$ and a + b + c = 0.

Solution: The answer is $\frac{3}{8}$.

First of all, we prove two auxiliary inequalities:

1. $bc \leq \frac{a^2}{4}$

Proof: Since -a = b + c, it is equivalent to $bc \leq \frac{b^2 + c^2 + 2bc}{4}$ or $(b - c)^2 \geq 0$. Done. 2. $b^4 + c^4 \geq \frac{a^4}{8}$.

Proof: Since -a = b + c, it is equivalent to $8b^4 + 8c^4 \ge b^4 + 4b^3c + 6b^2c^2 + 4bc^3 + c^4$, or $4b^4 + 4c^4 - 4bc^3 - 4b^3c + 3b^4 + 3c^4 - 6b^2c^2$ or $4(b^3 - c^3)(b - c) + 3(b^2 - c^2)^2 \ge 0$, which is true (the signs of $b^3 - c^3$ and b - c are the same). Done.

Due to $1 \mbox{ and } 2$

$$a^{4} + b^{4} + c^{4} - 3abc \ge a^{4} + \frac{a^{4}}{8} - 3\frac{a^{2}}{4} = \frac{3}{4}a^{2}(\frac{3}{2}a^{2} - 1) \ge \frac{3}{8}$$

since the function $f(x) = \frac{3}{4}x^2(\frac{3}{2}x^2 - 1)$ is strictly increasing on $[1, \infty)$ interval and it takes its minimum at x = 1. If a = 1, $b = c = -\frac{1}{2}$ the value of $a^4 + b^4 + c^4 - 3abc$ is exactly $\frac{3}{8}$. Done.