Bilkent University Department of Mathematics

Problem Of The Month

June 2006

Problem: Let $a_{1}, a_{2}, \ldots, a_{N}$ be pairwise different positive integer numbers satisfying the following two conditions:

1. $a_{i}<22$ for all $1 \leq i \leq N$.
2. $a_{k}+a_{l} \neq a_{m}+a_{n}$ for all pairwise different k, l, m, n.

Find the maximal possible value of N.

Solution: The answer is 7 . It can be readily seen that the numbers $a_{1}=1, a_{2}=$ $2, a_{3}=3, a_{4}=5, a_{5}=8, a_{6}=13$ and $a_{7}=21$ satisfy the conditions. Therefore, $N \geq 7$. Let us show that $N<8$.

Let $a_{1}, a_{2}, \ldots, a_{n}$ be a collection satisfying the conditions. Consider all possible pairs $\left(a_{i}, a_{j}\right), a_{i}>a_{j}$. The difference $a_{i}-a_{j}$ takes values between 1 and 20 .

Consider two pairs : $\left(a_{k}, a_{l}\right)$ and $\left(a_{p}, a_{q}\right)$. Suppose that $a_{k}-a_{l}=a_{p}-a_{q}$. Then $l=p$ (otherwise $a_{k}+a_{q}=a_{p}+a_{l}$ and the conditions are violated). In this case the number a_{l} will be called "common" for pairs $\left(a_{k}, a_{l}\right)$ and (a_{l}, a_{q}). Now we note that a number a_{l} can be "common" just for these pairs $\left(a_{k}, a_{l}\right)$ and (a_{l}, a_{q}). Indeed, if there are another pairs $\left(a_{r}, a_{l}\right)$ and $\left(a_{l}, a_{s}\right)$ then $a_{r}+a_{s}=a_{k}+a_{q}$ and again the conditions are violated. Also, minimal and maximal elements of the collection $a_{1}, a_{2}, \ldots, a_{n}$ can not be "common" numbers. Therefore, all possible pairs $a_{i}-a_{j}$ give at most $20-1+n-2=17+n$ differences. The number of pairs is $\frac{n(n-1)}{2}$. Therefore, $17+n \geq \frac{n(n-1)}{2}$ or $n^{2}-3 n \leq 36$, which implies that $n<8$. Done.

