

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

April 2006

Problem: Find all functions $f : \mathbf{Z} \to \mathbf{Z}$ satisfying

f(n) - f(n + f(m)) = m (1)

for all integer values of m and n.

Solution:

A. Let us prove that f takes each value at most once. Indeed, since $f(n + f(m_1)) = f(n) - m_1$ and $f(n + f(m_2)) = f(n) - m_2$, $f(m_1) = f(m_2)$ implies that $m_1 = m_2$.

B. Let us prove that f takes any integer number -m. Indeed, if we put m = 0 in (1) we get f(n + f(0)) = f(n). Therefore, by (A) f(0) = 0. And if we put n = 0 in (1) we get f(f(m)) = -m.

C. f(n+m) = f(n+f(f(-m))) = f(n) - f(f(-m)) = f(n) + f((f(f-m))) = f(n) + f(m)implies that f(n) = cn. If we put f(n) = cn into equation f(f(m)) = -m from (B) we get $c^2n = -n$ or $c^2 = -1$. Impossible: there is no function f satisfying (1).