Bilkent University Department of Mathematics

Problem Of The Month

April 2006

Problem: Find all functions $f: \mathbf{Z} \rightarrow \mathbf{Z}$ satisfying

$$
\begin{equation*}
f(n)-f(n+f(m))=m \tag{1}
\end{equation*}
$$

for all integer values of m and n.

Solution:

A. Let us prove that f takes each value at most once. Indeed, since $f\left(n+f\left(m_{1}\right)\right)=f(n)-m_{1}$ and $f\left(n+f\left(m_{2}\right)\right)=f(n)-m_{2}, f\left(m_{1}\right)=f\left(m_{2}\right)$ implies that $m_{1}=m_{2}$.
B. Let us prove that f takes any integer number $-m$. Indeed, if we put $m=0$ in (1) we get $f(n+f(0))=f(n)$. Therefore, by (A) $f(0)=0$. And if we put $n=0$ in (1) we get $f(f(m))=-m$.
C. $f(n+m)=f(n+f(f(-m)))=f(n)-f(f(-m))=f(n)+f((f(f-m)))=f(n)+f(m)$ implies that $f(n)=c n$. If we put $f(n)=c n$ into equation $f(f(m))=-m$ from (B) we get $c^{2} n=-n$ or $c^{2}=-1$. Impossible: there is no function f satisfying (1).

