Bilkent University Department of Mathematics

Problem Of The Month

January 2006

Problem: Find all natural numbers m, n, and k satisfying the following equation:

$$
5^{m}+7^{n}=k^{3}
$$

Solution: Let (m, n, k) be a solution of the equation $5^{m}+7^{n}=k^{3}$.

1. Let us prove that n is an odd number:

Indeed, k must be even, and therefore the right hand side is divisible by 8 . Since $5^{m}=1$ or 5 for even and odd values of m, and $7^{n}=1$ or 7 for even and odd values of $n(\bmod 8)$, the only possibility is: m is even, n is odd.
2. Let us prove that m is divisible by 3 :

Indeed, k is not divisible by 7 , otherwise 7 divides 5^{m}. Therefore, $k^{3}=1$ or -1 $(\bmod 7)$. Thus, $5^{m}=1$ or $-1(\bmod 7)$. This is possible only for $m=3 l$.
3. Now we have

$$
7^{n}=k^{3}-5^{3 l}=\left(k-5^{l}\right)\left(k^{2}+5^{l} k+5^{2 l}\right)
$$

The second factor exceeds 3 and therefore is divisible by 7 .
If the first factor $k-5^{m^{\prime}}$ is equal to 1 , then $5^{m}+7^{n}=k^{3}=1(\bmod 5)$ and since n is odd, $7^{n}=1(\bmod 5)$, no solution for odd n.

If the first factor $k-5^{l}$ is divisible by 7 , then 7 also divides its square $k^{2}-2 \cdot 5^{m^{\prime}} k+5^{2 l}$ and since 7 also divides the second factor $k^{2}+5^{l} k+5^{2 l}, 7$ divides
their difference $3 \cdot 5^{m^{\prime}} k$. Finally, since $5^{m} \neq 0(\bmod 7), 7$ must divide k. Again, since $5^{m} \neq 0(\bmod 7)$ the equation $5^{m}+7^{n}=k^{3}$ has no solution.
Thus, our equation has no solution in natural numbers (the only nonnegative integer solution is $(0,1,2))$.

