Bilkent University Department of Mathematics

Problem Of The Month

December 2005

Problem: Prove that for all natural numbers $b>a$

$$
\frac{a b}{(a, b)}+\frac{(a+1)(b+1)}{(a+1, b+1)} \geq \frac{2 a b}{\sqrt{b-a}}
$$

where (n, m) denotes the greatest common divisor of natural numbers n and m.

Solution: By applying Arithmetic Mean - Geometric Mean inequality we get

$$
\frac{a b}{(a, b)}+\frac{(a+1)(b+1)}{(a+1, b+1)} \geq 2 \sqrt{\frac{a(a+1) b(b+1)}{(a, b)(a+1, b+1)}}>\frac{2 a b}{\sqrt{(a, b)(a+1, b+1)}}
$$

In order to complete the solution, now we show that

$$
\begin{equation*}
a-b \geq(a, b)(a+1, b+1) \tag{1}
\end{equation*}
$$

Indeed, (a, b) and $(a+1, b+1)$ both divide $b-a$, since the greatest common divisor of two numbers also divides their difference. On the other hand, (a, b) and $(a+1, b+1)$ are relatively prime. Therefore, $(a, b)(a+1, b+1)$ divides $b-a$. Hence (1) is proved.

