

Bilkent University Department of Mathematics

Problem Of The Month

November 2005

Problem: Find all triples of natural numbers a, b, and c, such that

$$
a b+c=\left(a^{2}, b^{2}\right)+(a, b c)+(b, a c)+(c, a b)=239^{2}
$$

where (n, m) denotes the greatest common divisor of natural numbers n and m.

Solution: Suppose that $d>1$ is a greatest common divisor of a, b, and c. Then d divides 239^{2}, and since 239 is a prime, $d \geq 239$. In this case $\left(a^{2}, b^{2}\right) \geq 239^{2}$, a contradiction. Thus, a, b, and c are relatively prime and $(a, b c)=(a, b) \cdot(a, c)$, $(b, a c)=(a, b) \cdot(b, c),(c, a b)=(c, a) \cdot(c, b)$ and $\left(a^{2}, b^{2}\right)=(a, b)^{2}$. Now the equation has the following form:

$$
((a, b)+(a, c))((a, b)+(b, c))=239^{2} .
$$

Since $(a, b) \geq 1,(a, c) \geq 1$, and $(b, c) \geq 1$, the only possibility is

$$
(a, b)+(a, c)=239 \text { and }(a, b)+(b, c)=239 .
$$

Since a, b, and c are relatively prime, we have $(a, c)=(b, c)=1$ and therefore $(a, b)=238$. Now note that $a b+c=239^{2}$ and $(a, b)=238$ leads to $a=b=238$, otherwise $a b>239^{2}$. Finally, $a=238, b=238, c=477$ is the only solution.

