

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

November 2005

Problem: Find all triples of natural numbers a, b, and c, such that $ab + c = (a^2, b^2) + (a, bc) + (b, ac) + (c, ab) = 239^2$

where
$$(n, m)$$
 denotes the greatest common divisor of natural numbers n and m .

Solution: Suppose that d > 1 is a greatest common divisor of a, b, and c. Then d divides 239², and since 239 is a prime, $d \ge 239$. In this case $(a^2, b^2) \ge 239^2$, a contradiction. Thus, a, b, and c are relatively prime and $(a, bc) = (a, b) \cdot (a, c)$, $(b, ac) = (a, b) \cdot (b, c)$, $(c, ab) = (c, a) \cdot (c, b)$ and $(a^2, b^2) = (a, b)^2$. Now the equation has the following form:

$$((a,b) + (a,c))((a,b) + (b,c)) = 239^2.$$

Since $(a, b) \ge 1$, $(a, c) \ge 1$, and $(b, c) \ge 1$, the only possibility is

$$(a, b) + (a, c) = 239$$
 and $(a, b) + (b, c) = 239$.

Since a, b, and c are relatively prime, we have (a, c) = (b, c) = 1 and therefore (a, b) = 238. Now note that $ab + c = 239^2$ and (a, b) = 238 leads to a = b = 238, otherwise $ab > 239^2$. Finally, a = 238, b = 238, c = 477 is the only solution.