Bilkent University Department of Mathematics

Problem Of The Month

October 2005

Problem: Find all natural numbers n for which

$$
\sqrt{1 \underbrace{1+\ldots 4}_{n \text {-times }}}
$$

is an integer number.

Solution: $1 \underbrace{4 \ldots 4}_{n \text {-times }}$ is a perfect square for $n=2$ and $n=3,144=12^{2}$ and $1444=$ 38^{2}. Let us prove that for all values of $n \geq 4,1 \underbrace{4 \ldots 4}_{n \text {-times }}$ is not a perfect square. Suppose that $1 \underbrace{4 \ldots 4}_{n \text {-times }}=m^{2}$. Then $m=2 k$ and direct substitution yields $k^{2}=$ $36 \underbrace{1 \ldots 1}_{n-2 \text {-times }}=36 \underbrace{1 \ldots 1}_{n-4 \text {-times }} 00+11$. Modulo 4 , right hand side is 3 , but k^{2} is 0 or 1 (indeed, if $k=4 \ell+i, i=0,1,2,3$, then $k^{2}=4 p+i^{2}=0,1,4$, or 9 modulo 4). Contradiction.

