

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2005

Problem: Find all natural numbers n for which

$$\sqrt{1\underbrace{4\ldots4}_{n\text{-times}}}$$

is an integer number.

Solution: $1 \underbrace{4 \dots 4}_{n-\text{times}}$ is a perfect square for n = 2 and n = 3, $144 = 12^2$ and $1444 = 38^2$. Let us prove that for all values of $n \ge 4$, $1 \underbrace{4 \dots 4}_{n-\text{times}}$ is not a perfect square. Suppose that $1 \underbrace{4 \dots 4}_{n-\text{times}} = m^2$. Then m = 2k and direct substitution yields $k^2 = 36 \underbrace{1 \dots 1}_{n-2-\text{times}} = 36 \underbrace{1 \dots 1}_{n-4-\text{times}} 00 + 11$. Modulo 4, right hand side is 3, but k^2 is 0 or 1 (indeed, if $k = 4\ell + i$, i = 0, 1, 2, 3, then $k^2 = 4p + i^2 = 0, 1, 4$, or 9 modulo 4). Contradiction.