In This Lecture:

- Empirical Pseudopotential Method (EPM)
- Pseudopotential-based full zone k.p technique

EPM Bandstructure of Si

Empirical Pseudopotential Method (EPM)

We start with the effective one-electron crystal Hamiltonian

$$H = \frac{p^{2}}{2m_{0}} + V_{c}(\vec{r}); \quad V_{c}(\vec{r} + \vec{R}) = V_{c}(\vec{r})$$

Effective xtal potential A direct lattice
vector
Reciprocal
lattice vectors
$$\mathcal{H}\psi_{n,\mathbf{k}} = E_{n,\mathbf{k}}\psi_{n,\mathbf{k}}$$

$$\psi_{n,\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G})u_{\mathbf{G},\mathbf{k}}$$

$$\psi_{n,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}}\sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G})e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}}$$

$$u_{\mathbf{G},\mathbf{k}} = \frac{1}{\sqrt{\Omega}}e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}}$$

Reciprocal and direct lattice vectors are related by

 $\mathbf{G}_{\bullet}\mathbf{R} = 2\pi n$, where $n \in \mathcal{Z}$ (to be used soon)

$$\mathcal{H}\sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G}) u_{\mathbf{G},\mathbf{k}} = E_{n,\mathbf{k}} \sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G}) u_{\mathbf{G},\mathbf{k}}$$

$$\sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G}) \mathcal{H} u_{\mathbf{G},\mathbf{k}} = E_{n,\mathbf{k}} \sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G}) u_{\mathbf{G},\mathbf{k}}$$
Project this to $u_{\mathbf{G}',\mathbf{k}}$

$$\sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G}) \underbrace{\int u_{\mathbf{G}',\mathbf{k}}^* \mathcal{H} u_{\mathbf{G},\mathbf{k}}}_{\mathcal{H}\mathbf{G},\mathbf{k}} d\tau = \sum_{\mathbf{G}} a_{n,\mathbf{k}}(\mathbf{G}) E_{n,\mathbf{k}} \underbrace{\int u_{\mathbf{G}',\mathbf{k}}^* u_{\mathbf{G},\mathbf{k}}}_{\mathcal{H}\mathbf{G}',\mathbf{G}}(\mathbf{k})$$

$$\mathcal{H}_{\mathbf{G}',\mathbf{G}}(\mathbf{k})$$

$$xtal volume$$

Lecture 7

This results in an eigenvalue equation for <u>each</u> value of **k**:

This is an infinite set! \rightarrow Truncate the matrix size within a sphere of RLVs

Hence, this reveals a <u>diagonal</u> kinetic energy contribution:

$$\mathcal{H}_{\mathbf{G}',\mathbf{G}} = \frac{\hbar^2}{2m_0} |\mathbf{G} + \mathbf{k}|^2 \delta_{\mathbf{G},\mathbf{G}'} + V$$

Next, concentrate on the potential term for which we shall insert an atomistic form that is situated at each atomic site r_a :

$$V_{c} = \sum_{\mathbf{r}_{a}} V_{a}(\mathbf{r} - \mathbf{r}_{a})$$

$$V = \frac{1}{\Omega} \int \mathbf{e}^{-i(\mathbf{G}' + \mathbf{k}) \cdot \mathbf{r}} \sum_{\mathbf{r}_{a}} V_{a}(\mathbf{r} - \mathbf{r}_{a}) \mathbf{e}^{i(\mathbf{G} + \mathbf{k}) \cdot \mathbf{r}} d\tau$$

$$V = \frac{1}{\Omega} \sum_{\mathbf{r}_{a}} \int V_{a}(\mathbf{r} - \mathbf{r}_{a}) \mathbf{e}^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{r}} d\tau$$

$$\mathbf{r} \longrightarrow \mathbf{r} + \mathbf{r}_{a}, \qquad V = \frac{1}{\Omega} \sum_{\mathbf{r}_{a}} \int V_{a}(\mathbf{r}) \mathbf{e}^{i(\mathbf{G} - \mathbf{G}') \cdot (\mathbf{r} + \mathbf{r}_{a})} d\tau$$

$$V = \frac{1}{\Omega} \sum_{\mathbf{r}_a} e^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{r}_a} \int V_a(\mathbf{r}) e^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{r}} d\tau$$

Ref: Harrison

Geometrical (static) structure factor, S(G-G')

N : # primitive cells within the computation volume

$$\begin{split} S &= N \sum_{\mathbf{t}} \mathrm{e}^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{t}} \\ V &= \frac{N}{\Omega} \sum_{\mathbf{t}} \mathrm{e}^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{t}} \int V_a(\mathbf{r}) \mathrm{e}^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{r}} \, \mathrm{d}\tau \\ & | \text{lattice constant} \\ & | \mathbf{N}/\Omega = 1/\Omega_c] \rightarrow \text{(primitive) cell volume} \quad \text{e.g: For FCC lattice} \quad \Omega_c = \frac{A_0^3}{4} \end{split}$$

Atomic Basis for Diamond & ZB se/c's

Pseudopotential Form Factors

$$V = e^{-i(\mathbf{G}-\mathbf{G}')\cdot\mathbf{T}} \frac{1}{\Omega_c} \int V_a^{cat}(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\tau + e^{i(\mathbf{G}-\mathbf{G}')\cdot\mathbf{T}} \frac{1}{\Omega_c} \int V_a^{an}(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\tau$$
$$\mathbf{q} = \mathbf{G}' - \mathbf{G}$$
$$V_f^{cat}(q) \quad \text{Atomic Psp Form Factors} \quad V_f^{an}(q)$$
$$V = \begin{bmatrix} V_f^{an}(q) + V_f^{cat}(q) \end{bmatrix} \cos(\mathbf{G} - \mathbf{G}')\cdot\mathbf{T} + i\begin{bmatrix} V_f^{an}(q) - V_f^{cat}(q) \end{bmatrix} \sin(\mathbf{G} - \mathbf{G}')\cdot\mathbf{T}$$
$$Symmetric Anti-Symm$$
$$Psp Form Factors$$
$$V = V_f^S(q) \cos(\mathbf{G} - \mathbf{G}')\cdot\mathbf{T} + iV_f^A(q) \sin(\mathbf{G} - \mathbf{G}')\cdot\mathbf{T}$$
$$Symmetric/Anti-Symm Structure Factors$$

Here comes the final form of EPM

$$\mathcal{H}_{\mathbf{G}',\mathbf{G}} = \frac{\hbar^2}{2m_0} |\mathbf{G} + \mathbf{k}|^2 \delta_{\mathbf{G},\mathbf{G}'} + V_f^S(q) \cos{(\mathbf{G} - \mathbf{G}')} \cdot \mathbf{T} + iV_f^A(q) \sin{(\mathbf{G} - \mathbf{G}')} \cdot \mathbf{T}$$

Due to structure factors of Diamond & ZB only few form factors are needed

(Material	A_0 (Å)	$V_f(v$	(3) V	$V_f(\sqrt{8})$	$V_f(\sqrt{11})$)	
Form factors are extracted by fitting the b/s to experimental	Si Ge	5.43 5.66	-1.4 -1.5	-1.43 +0.27 -1.57 +0.07		+0.54 +0.41	_	
	Material	A_0 (Å)	$\sqrt{3}$	$V_f^S(q) \over \sqrt{8}$	$\sqrt{11}$	$\sqrt{3}$	$V_f^A(q)$ 2	$\sqrt{11}$
Uala	GaAs	5.64	-3.13	+0.14	+0.82	+0.95	+0.68	+0.14
	InAs	6.04	-2.99	0.00	+0.68	+1.09	+0.68	+0.41
	GaP	5.44	-2.99	+0.41	+0.95	+1.63	+0.95	+0.27
	InP	5.86	-3.13	+0.14	+0.82	+0.95	+0.68	+0.14

Sometimes as in strained lattices, form factors are needed over all wave vectors

Now from symmetric/antisymmetric back to atomic form factors

$$V_{f}^{an}(q) = \frac{1}{2} \left[V_{f}^{S}(q) + V_{f}^{A}(q) \right] \qquad V_{f}^{cat}(q) = \frac{1}{2} \left[V_{f}^{S}(q) - V_{f}^{A}(q) \right]$$

		V_f^{cat}	(q)	$V_f^{\mathrm{an}}(q)$		
Cation	Anion	$\sqrt{3}$	$\sqrt{11}$	$\sqrt{3}$	$\sqrt{11}$	
Ga	As	-2.04	+0.34	-1.09	+0.48	
In	As	-2.04	+0.14	-0.95	+0.54	
Ga	Р	-2.31	+0.34	-0.68	+0.61	
In	Ρ	-2.04	+0.34	-1.09	+0.48	

Note the change in atomic form factors as extracted from different compound band structures. This brings in the issue of the transferability of the atomic form factors; one partial remedy is non-local EPM

 $\Psi_{n,\vec{k}}(\vec{r}) = \sum_{\vec{C}} a_{n,\vec{k}}(\vec{G}) e^{i(\vec{G}+\vec{k})\cdot\vec{r}}$

 $\rho(\vec{r}) = \sum_{n,\vec{k}} \psi^*_{n,\vec{k}}(\vec{r}) \psi_{n,\vec{k}}(\vec{r})$

Figure 11.8 Total valence-band charge density for GaAs across the x-y plane of a single face-centred-cubic unit cell, for a variety of z values (given in A_0); note that the lighter the colour, then the higher the charge density. The Bravais lattice points are at the corners and centre of the z = 0 plane and on the edges of the $z = 0.5A_0$ plane

Lowest RLVs in FCC

Table 11.1 The first 65 reciprocal lattice vectors of a face-centred cubic crystal (in units of $2\pi/A_0$)

Direction			Magnitude				
$\langle 000 \rangle$	[000]		0				
$\langle 111 \rangle$	[111] [111]	$\overline{111}$	[111]	[111]	[111]	[111]	$\sqrt{3}$
$\langle 200 \rangle$	[200]	[020]	[002]	$[\overline{2}00]$	$[0\overline{2}0]$	$[00\overline{2}]$	2
$\langle 220 \rangle$	[220]	[202]	[022]	$\overline{[220]}$	[202]	$[02\overline{2}]$	$\sqrt{8}$
$\langle 311 angle$	[311] $[2\overline{1}1]$	[131]	[022] [113] $[1\overline{1}2]$	[311]	[1202] [131]	[022] [113]	$\sqrt{11}$
	[311] [311]	[131] [131]	[113] [113]	[311]	[311] [131]	[131] $[113]$	
$\langle 222 \rangle$	[311] [222]	$[\overline{2}22]$	$[111] \\ [2\overline{2}2]$	$[311]$ $[22\overline{2}]$	$[131]$ $[\overline{22}2]$	$[113]$ $[2\overline{22}]$	$\sqrt{12}$
$\langle 400 \rangle$	[222] [400]	[222] [040]	[004]	[400]	$[0\overline{4}0]$	[004]	4

EPM for the wurtzite structure

The Wurtzite (B4) Structure

- This is the hexagonal analog of the <u>zincblende</u> lattice, i.e. the stacking of the ZnS dimers is ABABAB...
- Replacing both the Zn and S atoms by C (or Si) gives the hexagonal diamond structure.
- The ``ideal" structure, where the nearest-neighbor environment of each atom is the same as in zincblende, is achieved when we take $c/a = (8/3)^{1/2}$ and u = 3/8.
- Note that we have arbitrarily chosen the ``u" parameter for the Zinc atoms to be zero.

From <u>NRL</u> crystal structure database

- Prototype: ZnS (Wurtzite)
- Pearson Symbol: <u>hP4</u>
- Strukturbericht Designation: <u>B4</u>
- <u>Space Group: P63mc</u> (<u>Cartesian</u> and <u>lattice coordinate</u> listings available)
- Number: <u>186</u>
- Other Compounds with this Structure: ZnO, SiC, AlN, CiSe, BN, C(Hexagonal Diamond)
- Primitive Vectors:

$$\mathbf{A}_1 = \frac{1}{2} \mathbf{a} \mathbf{X} - \frac{1}{2} \mathbf{3}^{1/2} \mathbf{a} \mathbf{Y}$$

$$\mathbf{A}_2 = \frac{1}{2} \mathbf{a} \mathbf{X} + \frac{1}{2} 3^{1/2} \mathbf{a} \mathbf{Y}$$

For WZ there are four atoms in the basis in contrast to two for ZB. Since the volume per atom is the same, a given volume of reciprocal space for WZ contains approximately twice as many RLVs.

As in the ZB case the psp for WZ can be written as

$$\begin{split} V(G) &= S_{s}(G) \ V_{f}^{s}(G) + S_{A}(G) \ V_{f}^{A}(G), \\ V_{f}^{s}(G) &= V_{f}^{an}(G) + V_{f}^{cat}(G), \ V_{f}^{A}(G) = V_{f}^{an}(G) - V_{f}^{cat}(G), \\ S_{s}(G) &= \cos\left[2\pi\left(\frac{L}{6} + \frac{M}{6} + \frac{N}{4}\right)\right]\cos(\pi N u), \\ S_{A}(G) &= \cos\left[2\pi\left(\frac{L}{6} + \frac{M}{6} + \frac{N}{4}\right)\right]\sin(\pi N u), \\ \text{where } \vec{G} &= L\vec{b}_{1} + M\vec{b}_{2} + N\vec{b}_{3} \end{split}$$

Examples on WZ EPM: GaN & AlN

Pseudopotential-based full-zone k·p

- 4- or 8-band k·p result in ever-concave-up or down bands [unrealistic away from the band edge]
- In principle, k·p technique becomes <u>exact</u> as the number of bands included goes to infinity
- The problem there lies in proliferation of Luttinger-like parameters which cannot be extracted from experiments
- Wang & Zunger have proposed a pseudopotential based k·p technique where all desired band interaction parameters are taken from ab initio/empirical pseudopotential computations

Formulation

Based on the Reference: C. Bulutay, Turkish Journal of Physics, **30**, 287 (2006).

Start with the effective one-e Hamiltonian described by a local potential

$$\left[\frac{p^2}{2m_0} + V_{\rm xtal}(\vec{r})\right] \psi_{n\vec{k}}(\vec{r}) = E_n(\vec{k}) \psi_{n\vec{k}}(\vec{r}) \,, \qquad \psi_{n\vec{k}}(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\vec{k}\cdot\vec{r}} u_{n\vec{k}}(\vec{r}) \,,$$

we obtain the well-known k.p expression in terms of cell-periodic parts

$$\left[H_0 + \frac{\hbar}{m_0}\vec{k}\cdot\vec{p}\right]u_{n\vec{k}}(\vec{r}) = \left[E_n(\vec{k}) - \frac{\hbar^2k^2}{2m_0}\right]u_{n\vec{k}}(\vec{r}), \quad H_0 = \frac{\hbar^2k^2}{2m_0} + V_{\text{xtal}}(\vec{r}).$$

Cell-periodic fn's satisfy a Sturm-Liouville type eigenvalue eq. Hence, they are complete when all (infinite) bands are considered at a fixed wv, say k_0

An arbitrary fn, such as $u_{j\vec{k}}(\vec{r})$ can be expanded in terms of this set

$$\begin{cases} u_{j\vec{k}}(\vec{r}) = \sum_{m=1}^{N_b} b_{j\vec{k},m\vec{k}_0} u_{m\vec{k}_0}(\vec{r}) \,. \end{cases}$$

This leads to the following eigenvalue eq. which becomes exact as $N_h \rightarrow \infty$

$$\sum_{m=1}^{N_b} \left[H_{n\vec{k}_0,m\vec{k}_0}(\vec{k}) - \delta_{nm} E_j(\vec{k}) \right] b_{j\vec{k},m\vec{k}_0} = 0, \, n \in [1, N_b],$$

where

$$H_{n\vec{k}_{0},m\vec{k}_{0}}(\vec{k}) \equiv \left[E_{m}(\vec{k}_{0}) + \frac{\hbar^{2}}{2m_{0}}\left(k^{2} - k_{0}^{2}\right)\right]\delta_{nm} + \frac{\hbar}{m_{0}}\left(\vec{k} - \vec{k}_{0}\right) \cdot \vec{p}_{n\vec{k}_{0},m\vec{k}_{0}},$$

and $\vec{p}_{n\vec{k}_0,m\vec{k}_0} \equiv \langle u_{n\vec{k}_0} | \vec{p} | u_{m\vec{k}_0} \rangle$, momentum matrix element

Since we cannot include infinite # bands at a fixed wv, we can modify the formulation by forming an expansion basis over <u>various bands</u> and wv, $\{m, \vec{k_i}\}$

$$u_{j\vec{k}}(\vec{r}) = \sum_{\{m,\vec{k}_i\}} b_{j\vec{k},m\vec{k}_i} u_{m\vec{k}_i}(\vec{r}) \,.$$

Since cell-periodic fn's are not necessariy normal at different wv's we introduce

$$\Delta_{n\vec{k}_s,m\vec{k}_i} \equiv \langle u_{n\vec{k}_s} | u_{m\vec{k}_i} \rangle$$

Then the expansion coefficients satisfy

$$\sum_{\{m,\vec{k}_i\}} \left\{ \left[E_m(\vec{k}_i) - \frac{\hbar^2 k_i^2}{2m_0} \right] + \frac{\hbar}{m_0} \left(\vec{k} - \vec{k}_i \right) \cdot \vec{p} - \left[E_j(\vec{k}) - \frac{\hbar^2 k^2}{2m_0} \right] \right\} b_{j\vec{k},m\vec{k}_i} u_{m\vec{k}_i}(\vec{r}) = 0.$$

Projecting to $|u_{n\vec{k}_s}\rangle$ results in a <u>generalized</u> eigenvalue equation

$$\sum_{\{m,\vec{k}_i\}} \left[H_{n\vec{k}_s,m\vec{k}_i}(\vec{k}) - \Delta_{n\vec{k}_s,m\vec{k}_i} E_j(\vec{k}) \right] b_{j\vec{k},m\vec{k}_i} = 0 \,, \, \forall n, \vec{k}_s \,,$$

where

$$H_{n\vec{k}_{s},m\vec{k}_{i}}(\vec{k}) \equiv \left[E_{m}(\vec{k}_{i}) + \frac{\hbar^{2}}{2m_{0}}\left(k^{2} - k_{i}^{2}\right)\right]\Delta_{n\vec{k}_{s},m\vec{k}_{i}} + \frac{\hbar}{m_{0}}\left(\vec{k} - \vec{k}_{i}\right) \cdot \vec{p}_{n\vec{k}_{s},m\vec{k}_{i}},$$

$$\vec{p}_{n\vec{k}_s,m\vec{k}_i} \equiv \left\langle u_{n\vec{k}_s} | \vec{p} | u_{m\vec{k}_i} \right\rangle,$$

Generalized momentum matrix element linking indirect transitions

So, necessary input for multiband k.p: $E_m(\vec{k}_i) \quad \vec{p}_{n\vec{k}_s,m\vec{k}_i} \quad \Delta_{n\vec{k}_s,m\vec{k}_i}$

These can readily be either extracted or generated from *ab initio* DFT or EPM bandstructure computations:

$$u_{m\vec{k}_{i}}(\vec{r}) = \frac{1}{\sqrt{\Omega_{0}}} \sum_{\vec{G}} B_{m\vec{k}_{i}}(\vec{G}) e^{i\vec{G}\cdot\vec{r}}$$

eigenvectors obtained from EPM/DFT

Hence , in terms of these eigenvectors we can generate

$$\begin{split} \Delta_{n\vec{k}_{s},m\vec{k}_{i}} &= \sum_{\vec{G}} B^{*}_{n\vec{k}_{s}}(\vec{G}) \, B_{m\vec{k}_{i}}(\vec{G}) \, , \\ \vec{p}_{n\vec{k}_{s},m\vec{k}_{i}} &= \sum_{\vec{G}} B^{*}_{n\vec{k}_{s}}(\vec{G}) \, \hbar \vec{G} \, B_{m\vec{k}_{i}}(\vec{G}) \, , \end{split}$$

Demonstration on indirect bandgap se/c's: Si, Ge, SiC, Diamond

Si: 4-band k·p

The selected expansion states are: from the Γ point we include the band indices 2 to 4 (with index 4 corresponding to valence band maximum), from the X point band 5 making altogether 4 states.

Si: 8-band k·p

The selected expansion states are all from the Γ point from bands 1 to 8.

Si: Full-Zone with 13 and 15 band k·p

Blue: EPM, Black symbols: PP-based k·p

The selected expansion states are: from the Γ point we include the band indices 2 to 8 (with index 4 corresponding to valence band maximum), from the X point bands 3 to 6, and from the L point bands 3 and 4, making altogether 13 states. In the figure on the right we append the first Γ state and the fifth K states to further improve the overall bandstructure.

Ge: 15-band k·p

The selected expansion states are: from the Γ point we include the band indices 2 to 8 (with index 4 corresponding to valence band maximum), from the X point bands 3 to 6, and from the L point bands 3 and 4, first Γ state and the fifth K states making altogether 15 states.

SiC (Cubic Phase: 3C) 15-band k·p

[Same expansion basis set as before]

Diamond: 15-band k·p

[Same expansion basis set as before]