In This Lecture:

$>$ Luttinger-Kohn Hamiltonian
$>$ Refreshment on Defects \& Elasticity
> Pikus-Bir Hamiltonian
> Atomic Units

k•p and Similar Band Edge Techniques

Brief Overview

>Kane's Hamiltonian
8 bands (CB+3 VB with spin) treated exactly
Coupling with the other bands neglected
HH band comes out with wrong sign and value (due above approximation)
No warping predicted (i.e., isotropic) for finite \mathbf{k}
$>$ Luttinger-Kohn Hamiltonian (for degenerate bands with spin-orbit)
6 VBs treated exactly; can be extended to include CBs as well
Other bands are included via Löwdin's technique
Warping of the VBs is predicted
>Pikus-Bir Hamiltonian
Just like LK Hamiltonian, but includes the effects of strain in the xtal

Luttinger-Kohn Hamiltonian

PHYSICAL REVIEW
VOLUME 97 , NUMBER 4 Fotion of Electrons and Holes in Perturbed Periodic Fields

Begin with the total Hamiltonian for the cell-periodic fn's dropping their band indices for convenience:

$$
\left\{\begin{array}{c}
H u_{\mathbf{k}}(\mathbf{r})=E(\mathbf{k}) u_{\mathbf{k}}(\mathbf{r}) \\
H=H_{0}+\frac{\hbar^{2} k^{2}}{2 m_{0}}+\frac{\hbar}{4 m_{0}^{2} c^{2}} \nabla V \times \mathbf{p} \cdot \boldsymbol{\sigma}+H^{\prime} \\
H_{0}=\frac{p^{2}}{2 m}+V(\mathbf{r}) \quad \Pi=\mathbf{p}+\overbrace{\frac{\hbar}{4 m_{0} c^{2}} \boldsymbol{\sigma} \times \nabla V}^{\begin{array}{c}
\text { Neglect } \\
\text { compared to }
\end{array}} \\
H^{\prime}=\frac{\hbar}{m_{0}} \mathbf{k} \cdot \Pi
\end{array}\right.
$$

Ref: Chuang

Expand any cell-periodic wf in terms of the $\mathbf{k}=0$ basis:

$$
u_{\mathbf{k}}(\mathbf{r})=\sum_{j^{\prime}}^{A} a_{j^{\prime}}(\mathbf{k}) u_{j^{\prime} 0}(\mathbf{r})+\sum_{\gamma}^{B} a_{\gamma}(\mathbf{k}) u_{\gamma 0}(\mathbf{r})
$$

where, according to Kane's model $\mathbf{k}=0$ solutions (exc. Class B) are of the form:

$$
\begin{aligned}
& u_{10}(\mathbf{r})=\left|\frac{3}{2}, \frac{3}{2}\right\rangle=\frac{-1}{\sqrt{2}}|(X+\mathrm{i} Y) \uparrow\rangle \\
& u_{20}(\mathbf{r})=\left|\frac{3}{2}, \frac{1}{2}\right\rangle=\frac{-1}{\sqrt{6}}|(X+\mathrm{i} Y) \downarrow\rangle+\sqrt{\frac{2}{3}}|Z \uparrow\rangle \\
& u_{30}(\mathbf{r})=\left|\frac{3}{2}, \frac{-1}{2}\right\rangle=\frac{1}{\sqrt{6}}|(X-\mathrm{i} Y) \uparrow\rangle+\sqrt{\frac{2}{3}}|Z \downarrow\rangle \\
& u_{40}(\mathbf{r})=\left|\frac{3}{2}, \frac{-3}{2}\right\rangle=\frac{1}{\sqrt{2}}|(X-\mathrm{i} Y) \downarrow\rangle \\
& u_{50}(\mathbf{r})=\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}|(X+\mathrm{i} Y) \downarrow\rangle+\frac{1}{\sqrt{3}}|Z \uparrow\rangle \\
& u_{60}(\mathbf{r})=\left|\frac{1}{2}, \frac{-1}{2}\right\rangle=\frac{1}{\sqrt{3}}|(X-\mathrm{i} Y) \uparrow\rangle-\frac{1}{\sqrt{3}}|Z \downarrow\rangle
\end{aligned}
$$

Ref: Chuang

Also recall that at $\mathbf{k}=0$, band edge fn's satisy:

$$
H(\mathbf{k}=0) u_{j 0}(\mathbf{r})=E_{j}(0) u_{j 0}(\mathbf{r})
$$

$$
\begin{array}{ll}
E_{j}(0)=E_{p}+\frac{\Delta}{3}=0 & \text { for } j=1,2,3,4 \\
E_{j}(0)=E_{p}-\frac{2 \Delta}{3}=-\Delta & \text { for } j=5,6 \\
\text { where } E_{p}=-\Delta / 3 &
\end{array}
$$

Now, apply Löwdin's method:

$$
\sum_{j^{\prime}}^{A}\left(U_{i j^{\prime}}^{A}-E \delta_{j j^{\prime}}\right) a_{j^{\prime}}(\mathbf{k})=0
$$

Effect of remote bands are here
where

$$
\begin{aligned}
& U_{j j^{\prime}}^{A}=H_{j j^{\prime}}+\sum_{\gamma \neq j, j^{\prime}}^{B} \frac{H_{j \gamma} H_{\gamma j^{\prime}}}{E_{0}-E_{\gamma}}=H_{j j^{\prime}}+\sum_{\gamma \neq j, j^{\prime}}^{B} \frac{H_{j \gamma}^{\prime} H_{\gamma j^{\prime}}^{\prime}}{E_{0}-E_{\gamma}} \\
& H_{j j^{\prime}}=\left\langle u_{j 0}\right| H\left|u_{j^{\prime} 0}\right\rangle=\left[E_{j}(0)+\frac{\hbar^{2} k^{2}}{2 m_{0}}\right] \delta_{j j^{\prime}} \quad\left(j, j^{\prime} \in A\right) \\
& \left.H_{j \gamma}^{\prime}=\left\langle u_{j 0}\right| \frac{\hbar}{m_{0}} \mathbf{k} \cdot|\overline{\mathrm{H}}| u_{\gamma 0}\right\rangle \cong \sum_{\alpha} \frac{\hbar k_{\alpha}}{m_{0}} p_{j \gamma}^{\alpha} \quad(j \in A, \gamma \notin A)
\end{aligned}
$$

where we note that $\Pi_{j j^{\prime}}=0$, for $j, j^{\prime} \in A$, and $\Pi_{j \gamma}^{\alpha} \simeq p_{j \gamma}^{\alpha}$ for $j \in A$ and $\gamma \notin A$. Since $\gamma \neq j$, adding the unperturbed part to the perturbed part in $H_{j \gamma}^{\prime}$ does not affect the results, i.e., $H_{j \gamma}=H_{j \gamma}^{\prime}$. We thus obtain

$$
\left.U_{j j^{\prime}}^{A}=\left[E_{j}(0)+\frac{\hbar^{2} k^{2}}{2 m_{0}}\right] \delta_{j j^{\prime}}+\frac{\hbar^{2}}{m_{0}^{2}} \sum_{\gamma \neq j, j^{\prime}}^{B} \sum_{\alpha, \beta} \frac{k_{\alpha} k_{\beta} p_{j \gamma}^{\alpha} p_{\gamma j^{\prime}}^{\beta}}{E_{0}-E_{\gamma}}\right]
$$

Change of notation; let $U_{j j^{\prime}}^{A} \equiv D_{j j^{\prime}}$ couples bands j and j ' via band γ in class B

Ref: Chuang

$$
D_{j j^{\prime}}=E_{j}(0) \delta_{j j^{\prime}}+\sum_{\alpha, \beta} D_{j j^{\alpha}}^{\alpha \beta} k_{\alpha} k_{\beta}
$$

where $D_{j j^{\prime}}^{\alpha \beta}=\frac{\hbar^{2}}{2 m_{0}}\left[\delta_{j j^{\prime}} \delta_{\alpha \beta}+\sum_{\gamma}^{B} \frac{p_{j \gamma}^{\alpha} p_{\gamma j^{\prime}}^{\beta}+p_{j \gamma}^{\beta} p_{\gamma j^{\prime}}^{\alpha}}{m_{0}\left(E_{0}-E_{\gamma}\right)}\right]$
For $j=j$, similar to single-band effective mass tensor

The couplings within class A can be expressed using three so-called Luttinger parameters: $\gamma_{1}, \gamma_{2}, \gamma_{3}$

They are actually fitted to experimental data to generate faithful band dispersions

In terms of Luttinger parameters, the LK Hamiltonian becomes:
$\overline{\overline{\mathbf{H}}}^{\mathrm{LK}}=-\left[\begin{array}{cccccc}P+Q & -S & R & 0 & -S / \sqrt{2} & \sqrt{2} R \\ -S^{+} & P-Q & 0 & R & -\sqrt{2} Q & \sqrt{3 / 2} S \\ R^{+} & 0 & P-Q & S & \sqrt{3 / 2} S^{+} & \sqrt{2} Q \\ 0 & R^{+} & S^{+} & P+Q & -\sqrt{2} R^{+} & -S^{+} / \sqrt{2} \\ -S^{+} / \sqrt{2} & -\sqrt{2} Q^{+} & \sqrt{3 / 2} S & -\sqrt{2} R & P+\Delta & 0 \\ \sqrt{2} R^{\oplus} & \sqrt{3 / 2} S^{+} & \sqrt{2} Q^{+} & -S / \sqrt{2} & 0 & P+\Delta\end{array}\right] \mathrm{LH}$
complex conjugate

$$
\text { where }\left\{\begin{aligned}
P & =\frac{\hbar^{2} \gamma_{1}}{2 m_{0}}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right) \\
Q & =\frac{\hbar^{2} \gamma_{2}}{2 m_{0}}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right) \\
R & =\frac{\hbar^{2}}{2 m_{0}}\left[-\sqrt{3} \gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)+i 2 \sqrt{3} \gamma_{3} k_{x} k_{y}\right] \\
S & =\frac{\hbar^{2} \gamma_{3}}{m_{0}} \sqrt{3}\left(k_{x}-\mathrm{i} k_{y}\right) k_{z}
\end{aligned}\right.
$$

Ref: Chuang

So, essentially we have solved the Hamiltonian

$$
\left[\frac{p^{2}}{2 m_{0}}+V(\mathbf{r})+\frac{\hbar}{4 m_{0}^{2} c^{2}} \nabla V \times \mathbf{p} \cdot \boldsymbol{\sigma}\right] \psi_{n \mathbf{k}}(\mathbf{r})=E_{n}(\mathbf{k}) \psi_{n \mathbf{k}}(\mathbf{r})
$$

where

$$
\psi_{n \mathbf{k}}(\mathbf{r})=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}(\mathbf{r}) \quad u_{n \mathbf{k}}(\mathbf{r})=\sum_{j=1}^{6} a_{j}(\mathbf{k}) u_{j 0}(\mathbf{r})
$$

For the expansion eigenvectors and eigenvalues:

$$
\sum_{j^{\prime}=1}^{6} H_{j j^{\prime}}^{\mathrm{LK}} a_{j^{\prime}}(\mathbf{k})=E a_{j}(\mathbf{k}) \quad E_{n}(\mathbf{k})=E
$$

But now, the effect of remote bands are also taken into account through the Löwdin renormalization. It reveals indirect band couplings among those within class A via direct couplings with those in class B.

Common defects in semiconductors

$>$ Point defects

A function of the xtal growth temperature

$$
\frac{N_{d}}{N_{t w t}}=k_{d} \exp \left(-\frac{E_{d}}{k_{B} T_{g w u t h}}\right)
$$

>Line defects (dislocations)

>Planar \& volume defects
Important in poly-xtalline mat'ls

Strain in heterostructures

Strain: $s=\frac{a_{S}-a_{L}}{a_{I}}$

A simplistic estimate of the critical thickness:

$$
d_{c} \cong \frac{a_{S}}{2|z|}
$$

Figure 1.20: (a) The conceptual exercise in which an overlayer with one lattice constant is placed without distortion on a substrate with a different lattice constant. (b) Dislocations are generated at positions where the interface bonding is lost. (c) The case is shown where the overlayer is distorted so that no dislocation is generated.

Ref: Singh

Self-assembled structures

Low strain:	Higher strain:	Higher strain:
Layer by layer growth	Layer by layer followed by island growth (Stranski-Krastonow)	Island growth (Volmer-Weber)
	(Soler	

Lateral feature sizes can be controlled from $100 \AA-1000 \AA$ $\Rightarrow 10^{12}$ features per wafer can be produced without lithography

Figure 1.22: Growth modes in strained epitaxy. The island mode growth can be exploited to make "self-assembled" quantum dot structures.

Some background on elasticity

Strain \& volume dilation
(a) Unstrained lattice

(b) Strained lattice

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\left(1+\varepsilon_{x x}\right) \hat{x}+\varepsilon_{x y} \hat{y}+\varepsilon_{x z} \hat{z} \\
& \mathbf{y}^{\prime}=\varepsilon_{y x} \hat{x}+\left(1+\varepsilon_{y y}\right) \hat{y}+\varepsilon_{y z} \hat{z} \\
& \mathbf{z}^{\prime}=\varepsilon_{z x} \hat{x}+\varepsilon_{z y} \hat{y}+\left(1+\varepsilon_{z z}\right) \hat{z}
\end{aligned}
$$

No longer unit vectors

We define six independent components of strain

$$
\begin{aligned}
& e_{1}=\varepsilon_{x x} \quad e_{2}=\varepsilon_{y y} \quad e_{3}=\varepsilon_{z z} \\
& e_{4}=\mathbf{x}^{\prime} \cdot \mathbf{y}^{\prime}=\varepsilon_{x y}+\varepsilon_{y x} \\
& e_{5}=\mathbf{y}^{\prime} \cdot \mathbf{z}^{\prime}=\varepsilon_{y z}+\varepsilon_{z y} \\
& e_{6}=\mathbf{z}^{\prime} \cdot \mathbf{x}^{\prime}=\varepsilon_{z x}+\varepsilon_{x z}
\end{aligned}
$$

Another common notation

$$
e_{x x}, e_{y y}, e_{z z}, e_{x y}, e_{y z}, e_{z x}
$$

Ref: Chuang

Strain \& volume dilation (cont'd)

$$
\begin{aligned}
& \mathbf{r}=x \hat{x}+y \hat{y}+z \hat{z} \equiv(x, y, z) \\
& \mathbf{r}^{\prime}=x \mathbf{x}^{\prime}+y \mathbf{y}^{\prime}+z \mathbf{z}^{\prime} \\
& \mathbf{r}^{\prime}=x^{\prime} \hat{x}+y^{\prime} \hat{y}+z^{\prime} \hat{z} \equiv\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& \frac{V+\delta V}{V}=\mathbf{x}^{\prime} \cdot \mathbf{y}^{\prime} \times \mathbf{z}^{\prime}=1+\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right) \\
& \frac{\delta V}{V}=\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z} \quad \text { Fractional change of xtal volume under } \\
& \text { uniform deformation }
\end{aligned}
$$

Some background on elasticity (cont'd)

Stress

$$
X_{x}, X_{y}, X_{z}, Y_{x}, Y_{y}, Y_{z}, Z_{x}, Z_{y}, Z_{z} \quad \text { Stress components in general }
$$

Under static equilibrium (total torque around origin should vanish)

$$
Y_{z}=Z_{y} ; \quad Z_{x}=X_{z} ; \quad X_{y}=Y_{x}
$$

Ref: Kittel

Some background on elasticity (cont'd)

Six independent components can be chosen as: $\boldsymbol{X}_{\boldsymbol{x}}, \boldsymbol{Y}_{y}, \boldsymbol{Z}_{z}, \boldsymbol{Y}_{z}, \boldsymbol{Z}_{\boldsymbol{x}}, \boldsymbol{X}_{\boldsymbol{y}}$
Stress-Strain relation: extension of Hooke's law (linear regime)

$$
\begin{aligned}
& X_{x}=C_{11} e_{x x}+C_{12} e_{y y}+C_{13} e_{z z}+C_{14} e_{y z}+C_{15} e_{z x}+C_{16} e_{x y} \\
& x_{y}=C_{21} e_{z x}+C_{22} e_{y y}+C_{23} e_{z z}+C_{24} e_{y z}+C_{25} e_{z x}+C_{25} e_{x y} \\
& z_{z}=C_{31} e_{z x}+C_{32} e_{y y}+C_{33} e_{z z}+C_{34} e_{y z}+C_{35} e_{z x}+C_{36} e_{x y} \\
& \gamma_{z}=C_{41} e_{z x}+C_{42} e_{y y}+C_{43} e_{z z}+C_{44} e_{y z}+C_{45} e_{z x}+C_{46} e_{x y} \\
& z_{x}=C_{51} e_{x x}+C_{52} e_{y y}+C_{53} e_{z z}+C_{54} e_{y z}+C_{55} e_{z x}+C_{56} e_{x y} \\
& x_{y}=C_{61} e_{x x}+C_{62} e_{y y}+C_{63} e_{z z}+C_{64} e_{y z}+C_{65} e_{z x}+C_{66} e_{x y}
\end{aligned}
$$

C's : elastic stiffness constants, moduli of elasticity

For a cubic xtal:

	$e_{x x}$	$e_{y y}$	$e_{z z}$	$e_{y z}$	$e_{z x}$	$e_{x y}$
X_{x}	C_{11}	C_{12}	C_{12}	0	0	0
Y_{y}	C_{12}	C_{11}	C_{12}	0	0	0
Z_{z}	C_{12}	C_{12}	C_{11}	0	0	0
Y_{z}	0	0	0	C_{44}	0	0
Z_{x}	0	0	0	0	C_{44}	0
X_{y}	0	0	0	0	0	C_{44}

Effects of xtal symmetry on elastic constants

For ${ }^{\text {s }}$	key to notation - zero component - non-zero componont \rightarrow equal components - components numerically equal, but opposite in sign - twice the numerical equal of the heavy dot component to which it in joined
For 0	(-) the numerical equal of the heavy dot component to which it is joined
For,	$\times 2\left(s_{11}-s_{12}\right)$
For 0	$\times \frac{1}{2}\left(c_{11}-c_{18}\right)$
	All the matrices aro symmotrical about the loading diagonal.

Classes 4, 7, 1/m TETRAGONAL

Ref: Nye

Back to pseudomorphic epitaxial growth

$$
\begin{aligned}
e_{\|} & =\frac{a_{S}}{a_{L}}-1 \\
& =\epsilon
\end{aligned}
$$

No stress along the growth direction!

$$
\begin{aligned}
\epsilon_{x x} & =\epsilon_{\|} \\
\epsilon_{y y} & =\epsilon_{x x} \\
\epsilon_{z z} & =\frac{-2 c_{12}}{c_{11}} \epsilon_{\|} \\
\epsilon_{x y} & =0 \\
\epsilon_{y z} & =0 \\
\epsilon_{z x} & =0
\end{aligned}
$$

For strained growth on (001)

For strained growth on
(111) substrate \& fcc lattice

$$
\begin{aligned}
\epsilon_{x x} & =\left[\frac{2}{3}-\frac{1}{3}\left(\frac{2 c_{11}+4 c_{12}-4 c_{44}}{c_{11}+2 c_{12}+4 c_{44}}\right)\right] \epsilon_{\|} \\
\epsilon_{y y} & =\epsilon_{x x} \\
\epsilon_{z z} & =\epsilon_{x x} \\
\epsilon_{x y} & =\left[\frac{-1}{3}-\frac{1}{3}\left(\frac{2 c_{11}+4 c_{12}-4 c_{44}}{c_{11}+2 c_{12}+4 c_{44}}\right)\right] \epsilon_{\|} \\
\epsilon_{y z} & =\epsilon_{x y} \\
\epsilon_{z x} & =\epsilon_{y z}
\end{aligned}
$$

Ref: Singh

On arbitrary growth planes

Ref: Singh

Strained tensor for self-organized quantum dots

Figure 1.24: Strain tensor in a pyramidal InAs on GaAs self-assembled quantum dot.
Ref: Singh

Pikus-Bir Hamiltonian: Including Strain

Uniformly deformed crystal

(a) Unstrained lattice

Undeformed Crystal
(b) Strained lattice

$\mathbf{x}^{\prime}=\left(1+\varepsilon_{x x}\right) \hat{x}+\varepsilon_{x y} \hat{y}+\varepsilon_{x z} \hat{z}$
$\mathbf{y}^{\prime}=\varepsilon_{y x} \hat{x}+\left(1+\varepsilon_{y y}\right) \hat{y}+\varepsilon_{y z} \hat{z}$
$\mathbf{z}^{\prime}=\varepsilon_{z x} \hat{x}+\varepsilon_{z y} \hat{y}+\left(1+\varepsilon_{z z}\right) \hat{z}$

No longer unit vectors

$$
\text { invert } \begin{gathered}
\mathbf{r}^{\prime}=\mathbf{r}+\overline{\bar{\varepsilon}} \cdot \mathbf{r}=(1+\overline{\bar{\varepsilon}}) \cdot \mathbf{r} \\
r_{i}=r_{i}^{\prime}-\sum_{j} \varepsilon_{i j} r_{j}^{\prime} \\
\mathbf{r}=(1-\overline{\bar{\varepsilon}}) \cdot \mathbf{r}^{\prime}
\end{gathered}
$$

$\begin{aligned} & \text { Back in the deformed } \\ & \text { xtal coordinate system: }\end{aligned}\left[\frac{\mathbf{p}^{\prime 2}}{2 m_{0}}+V\left(\mathbf{r}^{\prime}\right)\right] \psi_{n \mathbf{k}^{\prime}}\left(\mathbf{r}^{\prime}\right)=E_{n}\left(\mathbf{k}^{\prime}\right) \psi_{n \mathbf{k}^{\prime}}\left(\mathbf{r}^{\prime}\right)$
Ref: Chuang

Now comes some manipulations
using the chain rule $\frac{\partial}{\partial r_{i}^{\prime}}=\sum_{j} \frac{\partial r_{j}}{\partial r_{i}^{r}} \frac{\partial}{\partial r_{j}}=\frac{\partial}{\partial r_{i}}-\sum_{j} \varepsilon_{i j} \frac{\partial}{\partial r_{j}}$

$$
\text { therefore } \quad \mathbf{p}^{\prime}=\mathbf{p} \cdot(1-\overline{\bar{\varepsilon}}) \quad p^{\prime 2}=p^{2}-2 \sum_{i, j} p_{i} \varepsilon_{i j} p_{j}
$$

expanding the potential $V[(1+\overline{\bar{\varepsilon}}) \cdot \mathbf{r}]=V_{0}(\mathbf{r})+\sum_{i, j} \widetilde{V}_{i j} \overparen{\varepsilon}_{i j} \quad V_{i j}=\left.\frac{\partial V}{\partial \varepsilon_{i j}}\right|_{\varepsilon_{i j} \rightarrow 0}$

$$
\begin{aligned}
& {\left[H_{0}+H_{\varepsilon}\right] \psi_{n k}[(1+\overline{\bar{\varepsilon}}) \cdot \mathbf{r}]=E_{n}\left(\mathbf{k}^{\prime}\right) \psi_{n \mathbf{k}}[(1+\overline{\bar{\varepsilon}}) \cdot \mathbf{r}] } \\
& H_{0}=\frac{p^{2}}{2 m_{0}}+V_{0}(\mathbf{r}) \\
& H_{\varepsilon} \equiv \sum_{\alpha, \beta} \hat{D}^{\alpha \beta} \varepsilon_{\alpha \beta \beta}=\sum_{\alpha, \beta}\left(-\frac{1}{m_{0}} p_{\alpha} p_{\beta}+V_{\alpha \beta}\right) \varepsilon_{\alpha \beta} \\
& \psi_{n \mathbf{k}}[(1+\overline{\bar{\varepsilon}}) \cdot \mathbf{r}]=\mathrm{e}^{i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime} u_{n k}\left(\mathbf{r}^{\prime}\right)} \\
&=\mathrm{e}^{i \mathbf{k}^{\prime} \cdot(1+\overline{\bar{s}}) \cdot \mathbf{r}} \mathbf{u}_{n \mathbf{k}^{\prime}}[(1+\overline{\bar{\varepsilon}}) \cdot \mathbf{r}] \\
&=\mathrm{e}^{\mathbf{i k} \cdot \mathbf{r} \cdot u_{n \mathbf{k}}^{s}(\mathbf{r})}
\end{aligned}
$$

Ref: Chuang

Arriving at the Pikus-Bir Hamiltonian

$$
\begin{aligned}
& H_{0}\left[\mathrm{e}^{\mathrm{i} \cdot \mathbf{r}} u_{n \mathbf{k}}^{s}(\mathbf{r})\right]=\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}}\left(H_{0}+\frac{\hbar}{m_{0}} \mathbf{k} \cdot \mathbf{p}+\frac{\hbar^{2} k^{2}}{2 m_{0}}\right) u_{n \mathbf{k}}^{s}(\mathbf{r}) \\
& H_{\varepsilon}\left[\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}^{s}(\mathbf{r})\right]=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}\left(H_{z}-\frac{2 \hbar}{m_{0}} \sum_{\alpha, \beta} k_{\alpha} \varepsilon_{\alpha \beta} p_{\beta}\right) u_{n \mathbf{k}}^{s}(\mathbf{r}) \\
& {\left[H_{0}+H^{\prime}\right] u_{n \mathbf{k}}^{s}(\mathbf{r})=\left(E-\frac{\hbar^{2} k^{2}}{2 m_{0}}\right) u_{n \mathbf{k}}^{s}(\mathbf{r}) } \\
& H^{\prime}=H_{k}+H_{\varepsilon}+H_{\varepsilon k} \\
& H_{k}=\frac{\hbar}{m_{0}} \mathbf{k} \cdot \mathbf{p} \\
& H_{\varepsilon}=\sum_{\alpha, \beta} \hat{D}^{\alpha \beta} \varepsilon_{\alpha \beta} \\
& H_{z k} \equiv-2 \frac{\hbar}{m_{0}} \sum_{\alpha, \beta} k_{\alpha} \varepsilon_{\alpha \beta} p_{\beta}
\end{aligned}
$$

correspondence with LK Hamiltonian: $k_{\alpha} k_{\beta} \leftrightarrow \varepsilon_{\alpha \beta}$

Ref: Chuang
keeping terms to second order in \mathbf{k} and first order

$$
H=H^{\mathrm{LK}}+H_{\varepsilon} \quad\left(H_{\varepsilon}\right)_{j j^{\prime}}=\sum_{\alpha, \beta} \hat{D}_{j j^{\alpha}}^{\alpha \beta} \varepsilon_{\alpha \beta}
$$ in strain reduces to

Pikus-Bir CB deformation potential

$$
E(\mathbf{k})=E_{c}(0)+\frac{\hbar^{2}}{2} \sum_{\alpha, \beta}\left(\frac{1}{m^{*}}\right)_{\alpha \beta} k_{\alpha} k_{\beta}+a_{c}\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)
$$

For the VB: $\quad\left\{\begin{array}{l}\frac{\hbar^{2} \gamma_{1}}{2 m_{0}} \leftrightarrow D_{i}^{d}=-a_{t} \\ \frac{\hbar^{2} \gamma_{2}}{2 m_{0}} \leftrightarrow \frac{D_{u}}{3}=-\frac{b}{2} \\ \frac{\hbar^{2} \gamma_{3}}{2 m_{0}} \leftrightarrow \frac{D_{u}^{\prime}}{3}=\frac{-d}{2 \sqrt{3}}\end{array}\right.$
Ref: Chuang

$\overbrace{P=\left(\frac{\hbar^{2}}{2}\right) \gamma_{1}\left(k^{2}+k^{2}+k^{2}\right)}^{\text {Luttinger-Kohn part }} \quad \begin{array}{ll}P=P_{k}+P_{\varepsilon} & Q=Q_{k}+Q_{\varepsilon} \\ R=R_{k}+R_{\varepsilon} & S=S_{k}+S_{\varepsilon}\end{array} \overbrace{P_{\varepsilon}=-a_{v}\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)}^{\text {strain (Pikus-Bir) part }}$
$Q_{k}=\left(\frac{\hbar^{2}}{2 m_{0}}\right) \gamma_{2}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right)$
$R_{k}=\left(\frac{\hbar^{2}}{2 m_{0}}\right) \sqrt{3}\left[-\gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)+2 \mathrm{i} \gamma_{3} k_{x} k_{y}\right]$ $R_{\varepsilon}=\frac{\sqrt{3}}{2} b\left(\varepsilon_{x x}-\varepsilon_{y y}\right)-\mathrm{i} d \varepsilon_{x y}$
$Q_{\varepsilon}=-\frac{b}{2}\left(\varepsilon_{x x}+\varepsilon_{y y}-2 \varepsilon_{z z}\right)$
$S_{k}=\left(\frac{\hbar^{2}}{2 m_{0}}\right) 2 \sqrt{3} \gamma_{3}\left(k_{x}-\mathrm{i} k_{y}\right) \mathrm{k}_{z}$
$S_{\varepsilon}=-d\left(\varepsilon_{x z}-\mathrm{i} \varepsilon_{y z}\right)$
Ref: Chuang

Table K. 2 Important Band Structure Parameters ${ }^{\text {w }}$ for GaAs, AlAs, InAs, InP, and GaP

Ref: Chuang

(Hartree) Atomic Units

In any computational project on semiconductors, use atomic units (a.u.), not cgs/SI

cgs (Gaussian) \rightarrow Atomic Units:

Set in expressions: $e=m_{0}=\hbar=1$

SI \rightarrow Atomic Units:

Set in expressions: $\frac{e}{\sqrt{4 \pi \varepsilon_{0}}}=m_{0}=\hbar=1$

Derived Units in a.u.:

Energy: $1 \mathrm{Ha}=2 \mathrm{Ry}=27.12 \mathrm{eV}$
Length: $1 a_{\mathrm{B}}=$ Bohr Radius

Demonstration on Schrödinger Eq.

Start with the following expression in SI for the exciton bound states

$$
\left[-\frac{\hbar^{2}}{2 \mu_{X}} \nabla^{2}-\frac{e^{2}}{4 \pi \kappa \varepsilon_{0} r}\right] \psi_{X}(\vec{r})=E \psi_{X}(\vec{r})
$$

Setting above: $\frac{e}{\sqrt{4 \pi \varepsilon_{0}}}=m_{0}=\hbar=1$
Results in the expression in terms of variables in a.u. (denoted with tilde)

$$
\left[-\frac{1}{2 \tilde{\mu}_{X}} \tilde{\nabla}^{2}-\frac{1}{\kappa \tilde{r}}\right] \tilde{\psi}_{X}(\overrightarrow{\tilde{r}})=\tilde{E} \tilde{\psi}_{X}(\overrightarrow{\tilde{r}})
$$

