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� Electronic Bandstructure: General Info

In This Lecture:
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Electronic Bandstructure

all-electron

(FPLAPW)

valence electron
PAW

Acronyms

FPLAPW: Full-potential linearized 

augmented plane wave

PAW: Projector augmented wave

LMTO: Linearized muffin tin orbital

EPM: Empirical pseudopotential 

method

ETB: Empirical tigh-binding

ab-initio semi-empirical

planewave 
pseudopotential

(FP) LMTO EPM ETB k·p
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Perfect Crystal Hamiltonian (cgs units)
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� 1st Approximation: core vs. valence e’s

Still Eq. Above Applies with:

core e’s+nucleus

e’s

ion core

valence e’s

semicore
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� ions are much heavier (> 1000 times) than e’s

So, 

for e’s: ions are essentially stationary (at eql. lattice sites {Rj0})

� 2nd Approximation: Born-Oppenheimer or adiabatic approx.

for ions: only a time-averaged adiabatic electronic potential is seen

In other words, 

using the adiabatic approximation, we separate the (in principle 

non-separable) perfect crystal Hamiltonian
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Under adiabatic approximation…
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e-phonon interaction 
(resistance, superconductivity…)phonon spectrum electronic 

band structure

Ref: Yu-Cardona
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Electronic Hamiltonian
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over all valence e’s >1023 cm-3

� 3rd Approximation: Mean-field Approximation
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Density Functional 
Theory

VH+Vx+Vc

A direct lattice 
vector
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Translational Symmetry & Brillouin Zones
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a
x

Real space 

Direct Lattice

Momentum space

Reciprocal lattice

k

One-dimensional Lattice

k=-π/a k=π/a

1st BZ

[Real Space] Primitive lattice vector: a

[Mom. Space] Primitive lattice vector: 2π/a
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Three-dimensional Lattice
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     A general reciprocal lattice vector (RLV):  ;   

:  2

i

i j ij

a a

G n b n b n b n

NB b a πδ

⋅

= + + ∈

⋅ =

�

� � ��
ℤ

� �

Volume of the real 
space primitive cell

1st Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice
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Direct vs. Reciprocal Lattices
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also a SC lattice!Primitive 
translation 

vectors

1st BZ of SC lattice is again a cube
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� BCC
Direct Lattice Reciprocal Lattice

forms an 
fcc lattice!
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a is the side of the conventional cube

1st BZ of bcc lattice

a is the side of the conventional cube

Ref: Kittel
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� FCC
Direct Lattice Reciprocal Lattice

forms an 
bcc 
lattice!

a is the side of the conventional cube
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fcc 1st BZ Cardboard Model

Truncated Octahedron

Ref: Yu-Cardona

Ref: Wikipedia



C. Bulutay Lecture 2Topics on Semiconductor Physics

More on Symmetry

� The star of a k-point

All have the same energy eigenvalues

Symmetry of 

the direct lattice
Symmetry of the 

reciprocal lattice

� Wavefunctions can be expressed in a form such that they have definite 

transformation properties under symmetry operations of the crystal

Selection rules: certain matrix elements of certain operators vanish 

identically…

� Formal analysis is remedied by the use of Group theory 
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Symmetry Points & Plotting the Band Structure

Diamond BZ
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Bloch Functions vs Wannier Functions

�Felix Bloch provided the important 

theorem that the solution of the 

Schroedinger equation for a periodic 

potential must be of the special form:

Cell-periodic functions Orthonormality:
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Wannier functions
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Bloch vs. Wannier Functions

x
Bloch functions are extended

x

Wannier fn’s are localized around lattice sites Ri

Wannier form is useful in describing impurities, excitons…

But note that the Wannier functions are not unique!
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Crystal Momentum
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determines the phase factor by which a BF is multiplied 
under a translation in real space

k
�

k
�

labels different eigenstates together with the band index n

�
k
�

is determined up to a reciprocal lattice vector; this 
arbitrariness can be removed by restricting it to 1st BZ 

A typical conservation law in a xtal: k q k G′+ = +
� � ��

Any arbitrariness in labelling the BFs can be 
absorbed in these additive RLVs w/o changing 
the physics of the process

Physically, the lattice 

supplies necessary 

recoil momentum so 

that linear momentum 
is exactly conserved
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Be ware of the Complex Bandstructure
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“Real” bandstructure of Si

What if we allow k to become complex?

Ref: Chang-Schulman PRB 1982
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Complex Bandstructure (cont’d)

Evanescent modes play an important role in low-dimensional structures
They are required in mode matching at the boundaries etc…

Ref: Brand et al SST 1987


