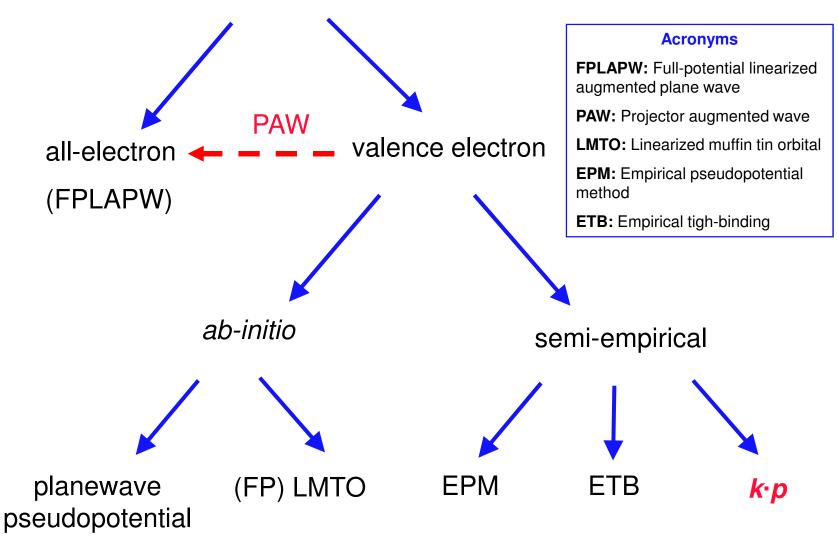
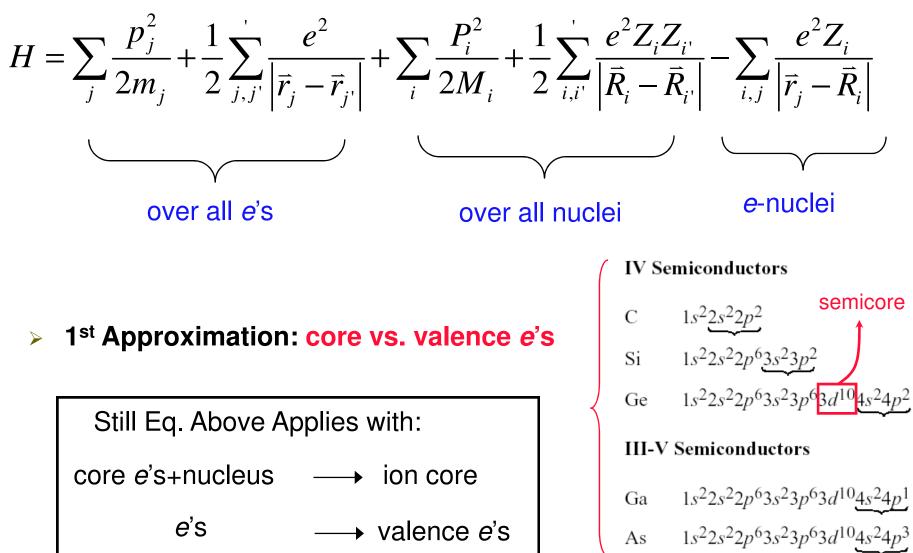
In This Lecture:

Electronic Bandstructure: General Info

Electronic Bandstructure



Perfect Crystal Hamiltonian (cgs units)



> 2nd Approximation: Born-Oppenheimer or adiabatic approx.

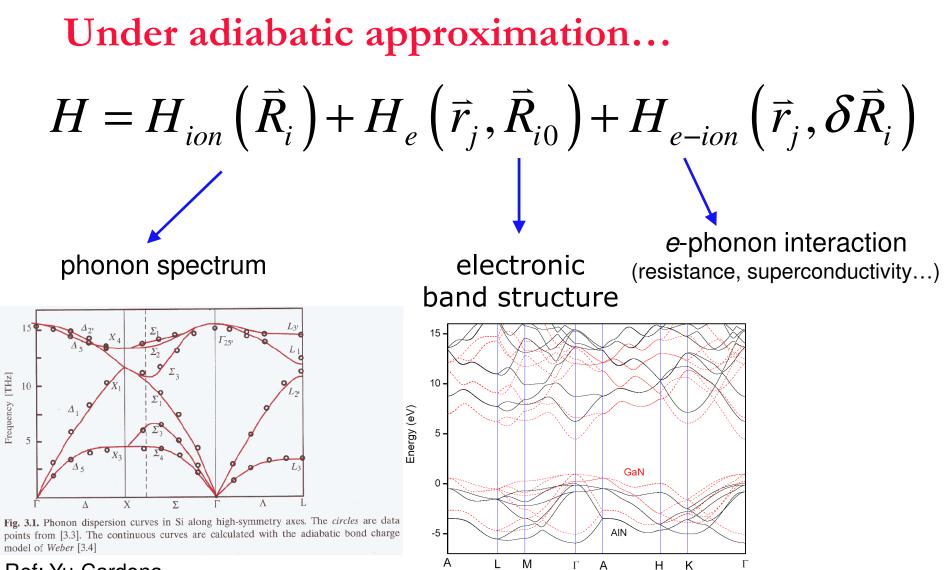
ions are much heavier (> 1000 times) than e's

So,

for *e*'s: ions are essentially stationary (at eql. lattice sites $\{R_{j0}\}$) for ions: only a time-averaged adiabatic electronic potential is seen

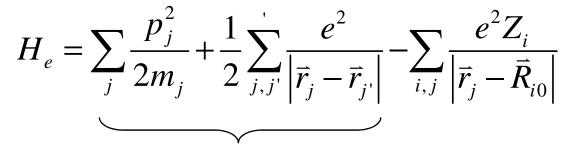
In other words,

using the adiabatic approximation, we separate the (in principle non-separable) perfect crystal Hamiltonian



Ref: Yu-Cardona

Electronic Hamiltonian



over all valence e's >1023 cm-3

> 3rd Approximation: Mean-field Approximation

$$H_{1e} = \frac{p^2}{2m} + V(\vec{r}); \quad V(\vec{r} + \vec{R}) = V(\vec{r})$$
Density Functional
Theory
$$V_H + V_x + V_c$$
A direct lattice
vector

Translational Symmetry & Brillouin Zones

 $T_R f(x) \equiv f(x+R);$ T_R : Translational Operator

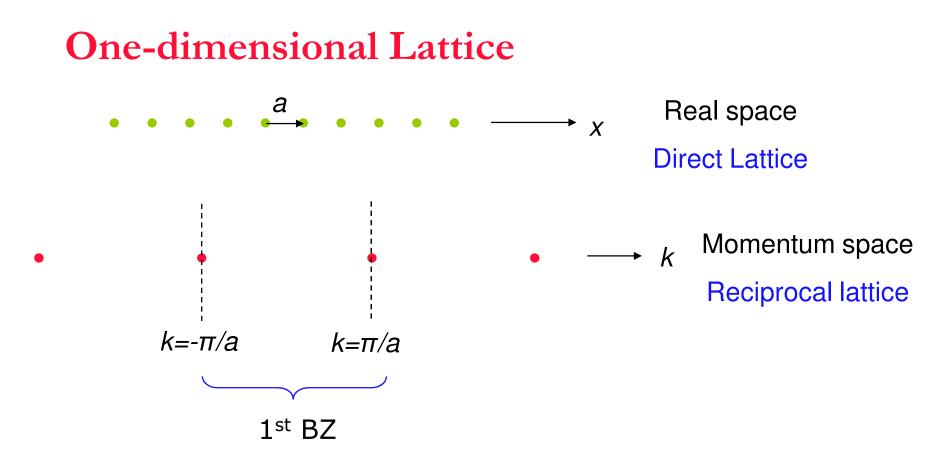
Introduce a function, $\Psi_k(x) \equiv e^{ikx}u_k(x)$, where $u_k(x+nR) = u_k(x)$ with $n \in \mathbb{Z}$

$$T_{R}\psi_{k}(x) = \psi_{k}(x+R) = e^{ikR} \psi_{k}(x)$$

eigenvalues of T_{R}
Since $[H_{1e}, T_{R}] = 0$,

Eigenfunctions of H_{1e} can be expressed also as eigenfunctions of T_{R}

NB: *k* is only defined modulo
$$\frac{2\pi}{R}$$
, i.e., *k* and $k + \frac{2\pi n}{R}$ are equivalent



[Real Space] Primitive lattice vector: a

[Mom. Space] Primitive lattice vector: $2\pi/a$

Three-dimensional Lattice

[Real space] Primitive lattice vectors: $\vec{a}_1, \vec{a}_2, \vec{a}_3$

A general direct lattice vector (DLV): $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$; $n_i \in \mathbb{Z}$

[Mom. space] Primitive lattice vectors: $\vec{b_1}, \vec{b_2}, \vec{b_3}$

where, $\vec{b}_i \equiv 2\pi \frac{\vec{a}_j \times \vec{a}_k}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3}$ Volume of the real space primitive cell

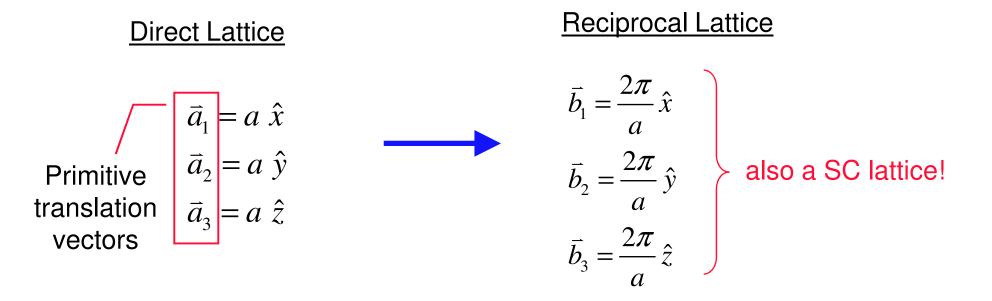
A general reciprocal lattice vector (RLV): $\vec{G} = n_1 \vec{b_1} + n_2 \vec{b_2} + n_3 \vec{b_3}$; $n_i \in \mathbb{Z}$

 $NB: \ \vec{b}_i \cdot \vec{a}_j = 2\pi \delta_{ij}$

1st Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice

Direct vs. Reciprocal Lattices

> SC



1st BZ of SC lattice is again a cube

> BCC

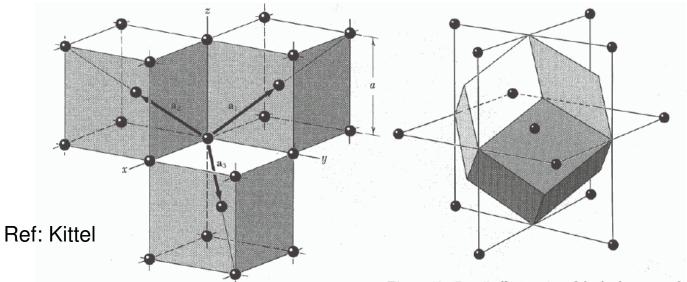
$$\bar{a}_{1} = \frac{a}{2}(\hat{y} + \hat{z} - \hat{x})$$
$$\bar{a}_{2} = \frac{a}{2}(\hat{z} + \hat{x} - \hat{y})$$
$$\bar{a}_{3} = \frac{a}{2}(\hat{x} + \hat{y} - \hat{z})$$

2

$$\vec{b}_1 = \frac{2\pi}{a}(\hat{y} + \hat{z})$$
$$\vec{b}_2 = \frac{2\pi}{a}(\hat{z} + \hat{x})$$
$$\vec{b}_3 = \frac{2\pi}{a}(\hat{x} + \hat{y})$$

forms an fcc lattice!

a is the side of the conventional cube



1st BZ of bcc lattice

Figure 12 Primitive basis vectors of the body-centered cubic lattice.

Figure 13 First Brillouin zone of the body-centered cubic lattice. The figure is a regular rhombic dodecahedron.

> FCC

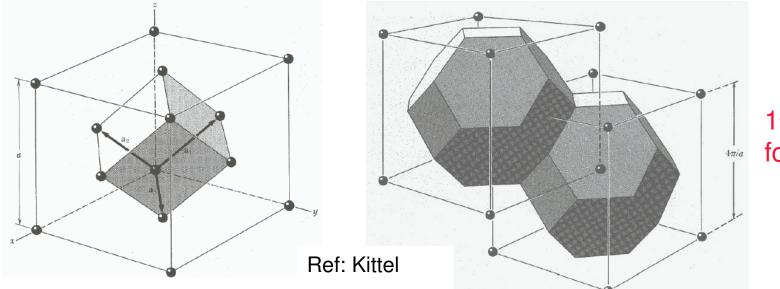
$$\vec{a}_1 = \frac{a}{2}(\hat{y} + \hat{z})$$
$$\vec{a}_2 = \frac{a}{2}(\hat{z} + \hat{x})$$
$$\vec{a}_3 = \frac{a}{2}(\hat{x} + \hat{y})$$

Reciprocal Lattice

$$\vec{b}_1 = \frac{2\pi}{a}(\hat{y} + \hat{z} - \hat{x})$$
$$\vec{b}_2 = \frac{2\pi}{a}(\hat{z} + \hat{x} - \hat{y})$$
$$\vec{b}_3 = \frac{2\pi}{a}(\hat{x} + \hat{y} - \hat{z})$$

forms an bcc lattice!

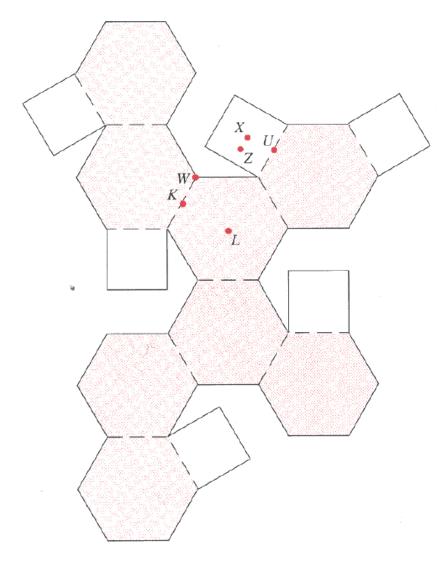
a is the side of the conventional cube



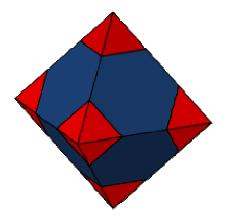
1st BZ of fcc lattice

C. Bulutay

fcc 1st BZ Cardboard Model



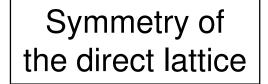
Truncated Octahedron

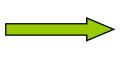


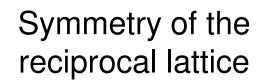
Ref: Wikipedia

Fig. 2.27. Template for constructing a model of the Brillouin zone of the fcc lattice. Paste this sheet on thin cardboard and cut along *solid lines*. Score along *broken lines* and tape the joints Ref: Yu-Cardona

More on Symmetry







> The star of a *k*-point

All have the same energy eigenvalues

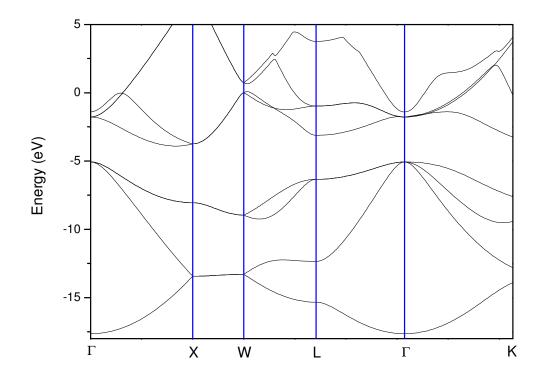
Wavefunctions can be expressed in a form such that they have definite transformation properties under symmetry operations of the crystal

Selection rules: certain matrix elements of certain operators vanish identically...

> Formal analysis is remedied by the use of Group theory

Symmetry Points & Plotting the Band Structure

EPM Bandstructure of Si



Bloch Functions vs Wannier Functions

Felix Bloch provided the important theorem that the solution of the Schroedinger equation for a periodic potential must be of the special form:

Cell-periodic functions

$$\Psi_{n\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{n\vec{k}}(\vec{r}), \text{ with } u_{n\vec{k}}(\vec{r}) = u_{n\vec{k}}(\vec{r}+\vec{R}),$$

Orthonormality:

$$\int \psi_{n\vec{k}}^{*}(\vec{r}) \ \psi_{n'\vec{k}'}(\vec{r}) \ d\vec{r} = \delta_{nn'} \ \delta_{\vec{k}\vec{k}'}$$
all space

 $\hbar \vec{k}$ is the crystal momentum (more on this later)

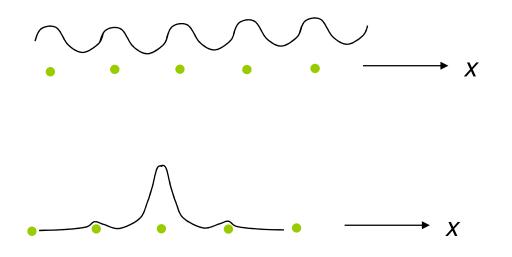
, Wannier functions

$$a_n(\vec{r};\vec{R}_i) = \frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{-i\vec{k}\cdot\vec{R}_i} \psi_{n\vec{k}}(\vec{r}),$$

 $\psi_{n\vec{k}}(\vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_i} e^{i\vec{k}\cdot\vec{R}_i} a_n(\vec{r};\vec{R}_i)$

Transformation relations

Bloch vs. Wannier Functions



Bloch functions are extended

Wannier fn's are localized around lattice sites R_i

Wannier form is useful in describing impurities, excitons...

But note that the Wannier functions are not unique!

Crystal Momentum

$$\psi_{n\bar{k}}\left(\vec{r}+\vec{T}\right)=e^{i\vec{k}\cdot\vec{r}}\psi_{n\bar{k}}\left(\vec{r}\right)$$

 \bar{k} determines the phase factor by which a BF is multiplied under a translation in real space

- \overline{k} labels different eigenstates together with the band index *n*
- \overline{k} is determined up to a reciprocal lattice vector; this arbitrariness can be removed by restricting it to 1st BZ

A typical conservation law in a xtal: $\vec{k} + \vec{q} = \vec{k'} + \vec{G}$

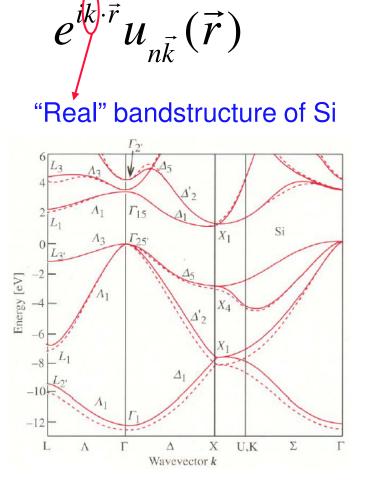
Physically, the lattice supplies necessary

Any arbitrariness in labelling the BFs can be absorbed in these additive RLVs w/o changing the physics of the process

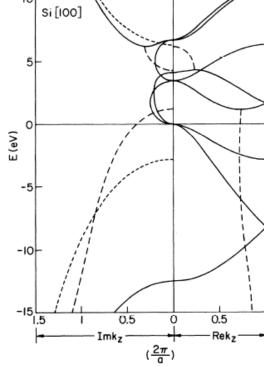
supplies necessary recoil momentum so that **linear momentum is exactly conserved**

C. Bulutay

Be ware of the Complex Bandstructure



What if we allow *k* to become complex?



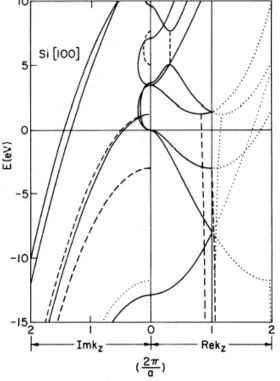
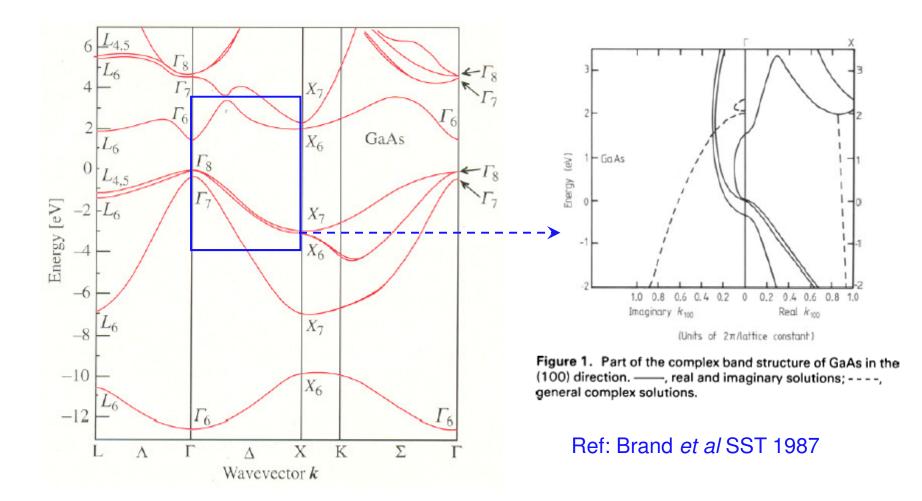


FIG. 2. Complex band structure of Si along [100] direction obtained in the tight-binding scheme. Solid curves denote real bands (right) and imaginary bands (left), short-dashed curves denote complex bands with Rek_z located at the zone boundary, and long-dashed curves denote complex bands with general values of Rek_z.

FIG. 5. Complex band structure of Si along [100] direction obtained in the $\vec{k} \cdot \vec{p}$ scheme. Solid curves denote real bands (right) and imaginary bands (left), and dashed curves denote complex bands. Dotted curves denote the repeated solutions, which should be discarded (see text).

Ref: Chang-Schulman PRB 1982

Complex Bandstructure (cont'd)



Evanescent modes play an important role in low-dimensional structures They are required in mode matching at the boundaries etc...