In This Lecture:

$>$ Interband Transitions in Bulk Se/c

* Momentum Matrix Element
* Polarization dependence
$>$ Interband Transitions in Quantum Wells
> Intraband Transitions in Bulk \& QWs

Interband Transitions in Bulk Se/c

As the photon momentum is negligible compared to electronic crystal momenta, the transitions are (almost)
vertical ($k_{\text {op }}=0$)
[See, next page]

Figure 9.5: The positions of the electron and hole energies at vertical k-values. The electron and hole energies are determined by the photon energy and the carrier masses. Since the photon momentum is negligible the transitions are vertical.

Momentum

Predominantly we are interested in transitions between CB and VB so that $i \rightarrow v, f \rightarrow c$

Matrix Elements

$$
\hat{e} \cdot \vec{p}=\hat{e} \cdot \int \psi_{c, \bar{k}_{c}}^{*} e^{i \bar{k}_{o p} \cdot \bar{r}} \vec{p} \psi_{v, \bar{k}_{v}} d^{3} r
$$

where

$$
\psi_{c, \bar{k}_{c}}(\vec{r})=\frac{1}{\sqrt{V}} e^{i \vec{k}_{c} \cdot \vec{r}} u_{c, \bar{k}_{c}}(\vec{r}) ; \quad \text { similarly for } \psi_{v, \bar{k}_{v}}(\vec{r})
$$

vanishes when $k_{\text {op }}=0$ due to
Bloch fn orthogonality

$$
\begin{aligned}
\vec{p}_{c v} & =\int_{c, \overrightarrow{k_{c}}}^{*}(\vec{r}) e^{-i \vec{k}_{c} \cdot \vec{r}} e^{i \vec{k}_{o p} \cdot \vec{r}} \hbar k_{v} e^{i \vec{k}_{v} \cdot \vec{r}} u_{v, \vec{k}_{v}}(\vec{r}) \frac{d^{3} r}{V} \\
& +\int u_{c, \vec{k}_{c}}^{*}(\vec{r}) e^{-i \vec{k}_{c} \cdot \vec{r}} e^{i \vec{k}_{o p} \cdot \vec{r}}\left(\frac{\hbar}{i} \vec{\nabla} u_{v, \bar{k}_{v}}(\vec{r})\right) e^{i \vec{k}_{v} \cdot \vec{r}} \frac{d^{3} r}{V}
\end{aligned}
$$

Treat slowly-varying (envelopes) and the cell-periodic parts separately

$$
\vec{p}_{c v}=\delta_{\vec{k}_{c}, \vec{k}_{v}+\vec{k}_{o p}} \int_{\Omega} u_{c, \bar{k}_{c}}^{*}(\vec{r})\left(\frac{\hbar}{i} \stackrel{\nabla}{\nabla} u_{v, \bar{k}_{v}}(\vec{r})\right) \frac{d^{3} r}{\Omega}
$$

Electric dipole forbidden transitions

When certain $\boldsymbol{p}_{c v}$ transition matrix element vanishes (due to some symmetry reason etc.) this is termed as a electric dipole-forbidden-transition.
In this case higher-order contributions such as electric quadrupole and magnetic dipole transitions become important. Compared to the electric dipole transitions they are reduced in strength by a factor of (lattice constant/wavelength of light) ${ }^{2}$, that requires very high frequencies (UV to X-rays)...

Polarization Dependence

Momentum-matrix parameter:

$$
P_{x}=\langle i S| p_{x}|X\rangle=\langle i S| p_{y}|Y\rangle=\langle i S| p_{z}|Z\rangle=\frac{m_{0}}{\hbar} P
$$

CB to HH Transitions:

$$
\begin{aligned}
& \langle i S \uparrow| \vec{p}\left|\frac{3}{2}, \frac{3}{2}\right\rangle=-\frac{P_{x}}{\sqrt{2}}(\hat{x}+i \hat{y}), \\
& \langle i S \downarrow| \vec{p}\left|\frac{3}{2}, \frac{3}{2}\right\rangle=0 \\
& \langle i S \downarrow| \vec{p}\left|\frac{3}{2},-\frac{3}{2}\right\rangle=\frac{P_{x}}{\sqrt{2}}(\hat{x}-i \hat{y}), \\
& \langle i S \uparrow| \vec{p}\left|\frac{3}{2},-\frac{3}{2}\right\rangle=0,
\end{aligned}
$$

WATCH OUT:

No coupling of the z-polarized light between CB \& HH

CB to LH Transitions:

$$
\begin{aligned}
& \langle i S \uparrow| \vec{p}\left|\frac{3}{2}, \frac{1}{2}\right\rangle=P_{x} \sqrt{\frac{2}{3}} \hat{z} \\
& \langle i S \downarrow| \vec{p}\left|\frac{3}{2}, \frac{1}{2}\right\rangle=-\frac{P_{x}}{\sqrt{6}}(\hat{x}+i \hat{y}), \\
& \langle i S \downarrow| \vec{p}\left|\frac{3}{2},-\frac{1}{2}\right\rangle=P_{x} \sqrt{\frac{2}{3}} \hat{z} \\
& \langle i S \uparrow| \vec{p}\left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{P_{x}}{\sqrt{6}}(\hat{x}-i \hat{y})
\end{aligned}
$$

Reflections on the polarization dependence

$>$ For a cubic xtal what differentiates z from x or y ?
$>$ Recall that in defining the expansion basis vectors we assumed electron wavevector to be along z direction
$>$ For that reason we are also using the z-projection of the spin
$>$ Does that give enough support for singling out z from x or y direction?
$>$ After all that's just for the sake of formulation, say a convention
\rightarrow Away from $\mathbf{k}=0 \mathrm{HH} \& \mathrm{LH}$ become mixed
$>$ So only at $\mathbf{k}=0$ we could talk about such a selectivity
$>$ But at $\mathbf{k}=0$ we lose any sense of direction of the k-vector!

To Remind you the LK Hamiltonian

$$
\overline{\overline{\mathbf{H}}}^{\mathrm{LK}}=-\left[\begin{array}{cccccc}
P+Q & -S & R & 0 & -S / \sqrt{2} & \sqrt{2} R \\
-S^{+} & P-Q & 0 & R & -\sqrt{2} Q & \sqrt{3 / 2} S \\
R^{+} & 0 & P-Q & S & \sqrt{3 / 2} S^{+} & \sqrt{2} Q \\
0 & R^{+} & S^{+} & P+Q & -\sqrt{2} R^{+} & -S^{+} / \sqrt{2} \\
-S^{+} / \sqrt{2} & -\sqrt{2} Q^{+} & \sqrt{3 / 2} S & -\sqrt{2} R & P+\Delta & 0 \\
\sqrt{2} R^{\oplus} & \sqrt{3 / 2} S^{+} & \sqrt{2} Q^{+} & -S / \sqrt{2} & 0 & P+\Delta
\end{array}\right]
$$

complex conjugate

$$
\text { where }\left\{\begin{array}{l}
P=\frac{\hbar^{2} \gamma_{1}}{2 m_{0}}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right) \\
Q=\frac{\hbar^{2} \gamma_{2}}{2 m_{0}}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right) \\
R=\frac{\hbar^{2}}{2 m_{0}}\left[-\sqrt{3} \gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)+i 2 \sqrt{3} \gamma_{3} k_{x} k_{y}\right] \\
S=\frac{\hbar^{2} \gamma_{3}}{m_{0}} \sqrt{3}\left(k_{x}-\mathrm{i} k_{y}\right) k_{z}
\end{array}\right.
$$

Averaging over the polarization for bulk

$>$ These considerations suggest us to consider unpolarized light
>Equivalently we shall consider electron wavevector to point along a general direction and average the matrix element over the solid angle

Let the electron wavevector to be along a direction (θ, Φ) :

$$
\mathbf{k}=k \sin \theta \cos \phi \hat{x}+k \sin \theta \sin \phi \hat{y}+k \cos \theta \hat{z}
$$

For illustration consider CB-HH transition:

$$
\left.\left.\left|\hat{e} \cdot \mathbf{p}_{c v}\right|^{2} \equiv\langle | \hat{e} \cdot \mathbf{M}_{c-h h}\right|^{2}\right\rangle=\underbrace{\frac{1}{4 \pi} \int\left|\hat{x} \cdot \mathbf{M}_{c-h h}\right|^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}_{\begin{array}{c}
\text { averaging over } \\
\text { the solid angle }
\end{array}}
$$

CB: $\quad\left|\mathrm{i} S \downarrow^{\prime}\right\rangle$ and $\left|\mathrm{i} S \uparrow^{\prime}\right\rangle$
$\left(\left|\frac{3}{2}, \frac{3}{2}\right\rangle^{\prime}=\frac{-1}{\sqrt{2}}\left|\left(X^{\prime}+i Y^{\prime}\right) \uparrow^{\prime}\right\rangle\right.$

$$
\left.=\frac{-1}{\sqrt{2}} \right\rvert\,(\cos \theta \cos \phi-\mathrm{i} \sin \phi) X
$$

$$
+(\cos \theta \sin \phi+\mathrm{i} \cos \phi) Y-\sin \theta Z\rangle\left|\uparrow^{\prime}\right\rangle
$$

$$
\left|\frac{3}{2},-\frac{3}{2}\right\rangle^{\prime}=\frac{1}{\sqrt{2}}\left|\left(X^{\prime}-\mathrm{i} Y^{\prime}\right) \downarrow^{\prime}\right\rangle
$$

$$
\left.=\frac{1}{\sqrt{2}} \right\rvert\,(\cos \theta \cos \phi+\mathrm{i} \sin \phi) X
$$

$$
+(\cos \theta \sin \phi-i \cos \phi) Y-\sin \theta Z\rangle\left|\downarrow^{\prime}\right\rangle
$$

Note that for ease of calculation we keep the spin parts in the new (rotated) coordinate system...

$$
\begin{aligned}
& \begin{aligned}
\left\langle\mathrm{i} S \uparrow^{\prime}\right| \mathbf{p}\left|\frac{3}{2}, \frac{3}{2}\right\rangle^{\prime}=- & {[(\cos \theta \cos \phi-\mathrm{i} \sin \phi) \hat{x}} \\
& +(\cos \theta \sin \phi+\mathrm{i} \cos \phi) \hat{y}-\sin \theta \hat{z}] \frac{P_{x}}{\sqrt{2}}
\end{aligned} \\
& \begin{aligned}
\left\langle\mathrm{i} S \downarrow^{\prime}\right| \mathbf{p}\left|\frac{3}{2},-\frac{3}{2}\right\rangle^{\prime}= & {[(\cos \theta \cos \phi+\mathrm{i} \sin \phi) \hat{x}} \\
& +(\cos \theta \sin \phi-\mathrm{i} \cos \phi) \hat{y}-\sin \theta \hat{z}] \frac{P_{x}}{\sqrt{2}}
\end{aligned} \\
& \begin{array}{l}
\left\langle\mathrm{i} S \uparrow^{\prime}\right| \mathbf{p}\left|\frac{3}{2},-\frac{3}{2}\right\rangle^{\prime}= \\
\left\langle\mathrm{i} S \downarrow^{\prime}\right| \mathbf{p}\left|\frac{3}{2}, \frac{3}{2}\right\rangle^{\prime}=
\end{array}
\end{aligned}
$$

Consider, for instance optical transition from the CB of one spin, say $<\mathrm{i} S \uparrow^{\prime} \mid$ to either of the HH bands $\left|\frac{3}{2}, \frac{3}{2}\right\rangle^{\prime}\left|\frac{3}{2},-\frac{3}{2}\right\rangle^{\prime}$; one of them is already zero

Bulk Momentum Matrix Element for Unpolarized Light

$$
\begin{aligned}
\left.\left.\left|\hat{e} \cdot \mathbf{p}_{c v}\right|^{2} \equiv\langle | \hat{e} \cdot \mathbf{M}_{c-h h}\right|^{2}\right\rangle & =\frac{1}{4 \pi} \int\left|\hat{x} \cdot \mathbf{M}_{c-h h}\right|^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& =\frac{1}{4 \pi} \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi\left(\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \phi\right) \frac{P_{x}^{2}}{2} \\
& =\frac{1}{3} P_{x}^{2} \equiv M_{b}^{2}
\end{aligned}
$$

where $\quad M_{b}^{2}=\frac{1}{3} P_{x}^{2}=\frac{m_{0}^{2}}{3 \hbar^{2}} P^{2}$
Kane's parameter, (not a surprise)

$$
=\left(\frac{m_{0}}{m_{e}^{*}}-1\right) \frac{m_{0} E_{g}\left(E_{g}+\Delta\right)}{6\left(E_{g}+\frac{2}{3} \Delta\right)}
$$

Alternatively, an energy parameter E_{p} can be defined as:

$$
E_{p}=\frac{2 m_{0}}{\hbar^{2}} P^{2}, \text { so that } M_{b}=\frac{m_{0}}{6} E_{p}
$$

The other polarizations, spin, and LH band

Same result M_{b}^{2} is obtained for

* For $\hat{e}=\hat{y}$ or $\hat{e}=\hat{z} \quad$ (cubic symmetry)
* For the other spin component of the CB, $\left\langle i S \downarrow \downarrow^{\prime}\right|$
* For the transition between the LH band (per spin),

$$
\left.\left.\left|\left\langle i S \downarrow^{\prime}\right| e x\right| \frac{3}{2}, \frac{1}{2}\right\rangle\left.^{\prime}\right|^{2}+\left|\left\langle i S \downarrow^{\prime}\right| e x\right| \frac{3}{2},-\frac{1}{2}\right\rangle\left.^{\prime}\right|^{2}
$$

Joint Density of States (also called reduced DOS)

This is an important piece that appears inside total transition rate expressions

Single Parabolic Band DOS:
 $$
N_{m}(E)=\sum_{\bar{k} \in \mathbb{I N}^{\mathrm{Bz}}} \sum_{\sigma} \delta\left(E-E_{m}(\vec{k})\right)
$$

For a parabolic band: $E-E_{c}=\frac{\hbar^{2} k^{2}}{2 m_{\text {dos }}^{*}}$

$$
N_{m}(E)=\sqrt{2} \frac{\left(m_{d o s}^{*}\right)^{3 / 2} \sqrt{E-E_{c}}}{\pi^{2} \hbar^{3}},
$$

Joint DOS of CB-VB:

Between two parabolic CB and VB: $\hbar \omega-E_{g}=\frac{\hbar^{2} k^{2}}{2} \underbrace{\left(\frac{1}{m_{e}^{*}}+\frac{1}{m_{h}^{*}}\right)}_{\frac{1}{m_{r}^{*}}}$

$$
N_{c v}(\hbar \omega)=\sum_{\vec{k} \in \mathrm{I}^{\mathrm{L}} \mathrm{BZ}} \sum_{\sigma} \delta\left(E_{v}(\vec{k})-E_{c}(\vec{k})+\hbar \omega\right)
$$

$$
N_{c v}(\hbar \omega)=\sqrt{2} \frac{\left(m_{r}^{*}\right)^{3 / 2} \sqrt{\hbar \omega-E_{g}}}{\pi^{2} \hbar^{3}}
$$

Absorption Rate (Final Expression)

With all these ingredients the bulk absorption rate for unpolarized light becomes:

$$
\begin{aligned}
& W_{a b s}=\frac{\pi e^{2} \hbar n_{p h}}{m_{0}^{2} \hbar \omega \varepsilon}\left(2 M_{b}^{2}\right) N_{c v}(\hbar \omega) \\
& \\
& N_{c v}(\hbar \omega)=\sqrt{2} \frac{\left(m_{r}^{*}\right)^{3 / 2} \sqrt{\hbar \omega-E_{g}}}{\pi^{2} \hbar^{3}}
\end{aligned}
$$

Radiative e-h Recombination Time: Emission

In the case of interband recombination rate of an e with a hole at the same \mathbf{k} state, we integrate over all possible photon states

$$
W_{\mathrm{em}}=\frac{\pi e^{2} \hbar}{m_{o}^{2} \hbar \omega \boldsymbol{\epsilon}}\left(n_{p h}+1\right)\left|\boldsymbol{a} \cdot \boldsymbol{p}_{\mathrm{if}}\right|^{2} \rho_{a}(\hbar \omega)
$$

$$
\rho(\hbar \omega)=\frac{2 \omega^{2}}{2 \pi^{2} \hbar v^{3}} \quad 3 \mathrm{D} \text { total photon DOS }
$$

For $n_{p h}=0, \quad W_{e m} \rightarrow W_{s p o n}$

Associated e-h radiative recombination time is $\tau_{0}=\frac{1}{W_{\text {spon }}}$

Interband Transitions in Quantum Wells

transitions between subbands derived from different bulk bands

Subband Wavefunctions

3D to 2D: Optical transitions are affected in two ways
> Form of JDOS
> Momentum matrix element; anisotropy is now genuine

Momentum Matrix Element in QWs

In going from 3D to 2D:

$$
\begin{aligned}
& p_{\text {if }}^{\text {3D }}=\frac{1}{V} \int e^{i\left(\mathbf{k}_{k}-\mathbf{k}_{n}\right) \cdot \mathbf{r}\left\langle u_{v}^{v}\right| p_{a}\left|u_{c}\right\rangle d^{3} r} \\
& \rightarrow p_{\mathrm{ff}}^{2 \mathrm{D}}=\frac{1}{A W} \sum_{\nu} \underbrace{\left(g_{v}^{\nu / m}\left|g_{c}^{n}\right\rangle\right.} \underbrace{e^{i\left(\mathbf{k}_{e}-\mathbf{k}_{h}\right) \cdot \rho}\left\langle u_{v}^{\nu m}\right| p_{c}\left|u_{c}\right\rangle d^{2} \rho} \\
& \text { env. fn. overlap in-plane overlap } \\
& \text { along growth dir. }
\end{aligned}
$$

[Other term, p_{a} acting on $g_{c}^{n}(z)$ leaves $\left\langle u_{v}^{v m} \mid u_{c}\right\rangle=0$ at the same \vec{k} state]
Unlike 3D, polarization dependence exists in 2D
Notation $\left\{\begin{array}{l}\text { TE (to growth axis): Electric field in QW plane } \\ \text { TM (to growth axis): Electric field along growth axis }\end{array}\right.$

Let the QW growth axis be \boldsymbol{z} axis

TE (Optical electric field in $x y$ plane)
Optical dipole matrix element is averaged over the azimuthal angle From both $\mathbf{H H}$ bands to $\langle\mathrm{i} S \uparrow$ †

$$
\left.\left.\left|\hat{e} \cdot \mathbf{p}_{c u}\right|^{2} \equiv\langle | \hat{e} \cdot \mathbf{M}_{c-h n}\right|^{2}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \hat{\phi}\left|\hat{x} \cdot \mathbf{M}_{c-h h}\right|^{2}
$$

Same results for

 the other CB spins not considered$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi\left(\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \phi\right) \frac{P_{x}^{2}}{2} \\
& =\frac{3}{4}\left(1+\cos ^{2} \theta\right) M_{b}^{2}
\end{aligned}
$$

From both LH bands to $\langle\mathrm{i} S \downarrow 1$

$$
\left.\left.\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-l h}\right|^{2}\right\rangle=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi\left(\left|\left\langle\mathrm{i} S \downarrow^{\prime}\right| p_{x}\right| \frac{3}{2}, \frac{1}{2}\right\rangle\right|^{2}+\left|\left\langle\mathrm{i} S \downarrow^{\prime}\right| p_{x}\right| \frac{3}{2},-\frac{1}{2}\right\rangle\left.\right|^{2}\right)
$$

Same results for the other CB spins not considered

$$
\begin{aligned}
& =\left(\frac{2}{3} \sin ^{2} \theta\left\langle\cos ^{2} \phi\right\rangle+\frac{1}{6} \cos ^{2} \theta\left\langle\cos ^{2} \phi\right\rangle+\frac{1}{6}\left\langle\sin ^{2} \phi\right\rangle\right) P_{x}^{2} \\
& =\left[\sin ^{2} \theta+\frac{1}{4}\left(\cos ^{2} \theta+1\right)\right] M_{b}^{2} \\
& =\left(\frac{5}{4}-\frac{3}{4} \cos ^{2} \theta\right) M_{b}^{2}
\end{aligned}
$$

TM (Optical electric field along z axis)

$$
\begin{aligned}
\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-h h}\right|^{2}\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi\left|\hat{z} \cdot \mathbf{M}_{c-h h}\right|^{2}=\frac{3}{2} \sin ^{2} \theta M_{b}^{2} \\
\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-h h}\right|^{2}\right\rangle & \left.\left.=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi\left(|\langle\mathrm{i} S \downarrow| e z| \frac{3}{2}, \frac{1}{2}\right\rangle\right|^{2}+|\langle\mathrm{i} S \downarrow| e z| \frac{3}{2},-\frac{1}{2}\right\rangle\left.\right|^{2}\right) \\
& =\left(\frac{1}{6} \sin ^{2} \theta+\frac{2}{3} \cos ^{2} \theta\right) P_{x}^{2} \\
& =\frac{1+3 \cos ^{2} \theta}{2} M_{b}^{2}
\end{aligned}
$$

Table 9.1 Summary of the Momentum Matrix Elements in Parabolic
$\underline{\text { Band Model }\left(\left|\hat{e} \cdot \mathbf{p}_{c e}\right|^{2}=|\hat{e} \cdot \mathbf{M}|^{2}\right)}$
Bulk $\left|\hat{x} \cdot \mathbf{p}_{c e}\right|^{2}=\left|\hat{y} \cdot \mathbf{p}_{c c}\right|^{2}=\left|\hat{z} \cdot \mathbf{p}_{c v}\right|^{2}=M_{b}^{2}=\frac{m_{0}}{6} E_{p}$

Quantum Well

TE Polarization $(\hat{e}=\hat{x}$ or $\hat{y}) \quad$ TM Polarization $(\hat{e}=\hat{z})$
$\left.\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-h h}\right|^{2}\right\rangle=\left.\frac{3}{4}\left(1+\cos ^{2} \theta\right) M_{b}^{2} \quad\langle | \hat{e} \cdot \mathbf{M}_{c-h h}\right|^{2}\right\rangle=\frac{3}{2} \sin ^{2} \theta M_{b}^{2}$
$\left.\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-l h}\right|^{2}\right\rangle=\left.\left(\frac{5}{4}-\frac{3}{4} \cos ^{2} \theta\right) M_{b}^{2} \quad\langle | \hat{e} \cdot \mathbf{M}_{c-l h}\right|^{2}\right\rangle=\frac{1}{2}\left(1+3 \cos ^{2} \theta\right) M_{b}^{2}$
Conservation Rule
Sum $\left.\left.\left.\left.\langle | \hat{x} \cdot \mathbf{M}_{c-h}\right|^{2}\right\rangle+\left.\langle | \hat{y} \cdot \mathbf{M}_{c-h}\right|^{2}\right\rangle+\left.\langle | \hat{z} \cdot \mathbf{M}_{c-h}\right|^{2}\right\rangle=3 M_{b}^{2},(h=h h$ or $l h)$
Rules $\left.\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-h}\right|^{2}\right\rangle+\left.\langle | \hat{e} \cdot \mathbf{M}_{c-l h}\right|^{2}\right\rangle=2 M_{b}^{2}$

Back to Absorption Rate in QWs

JDOS in 2D: $\begin{aligned} & \frac{N_{c v}^{2 D}(\hbar \omega)}{W}=\frac{m_{r}^{*}}{\pi \hbar^{2} W} \sum_{n m}\left\langle g_{v}^{m} \mid g_{c}^{n}\right\rangle \theta\left(\boldsymbol{E}_{\mathrm{nm}}-\hbar \omega\right) \\ & \boldsymbol{E}_{\mathrm{nm}}=\boldsymbol{E}_{\mathrm{g} \pi \mathrm{p}}+\boldsymbol{E}_{c}^{n}+\boldsymbol{E}_{v}^{m}\end{aligned}$

$$
\alpha(\hbar \omega)=\frac{\pi e^{2} \hbar}{m_{o}^{2} c n_{r} \epsilon_{o}} \frac{1}{(\hbar \omega)}\left|\boldsymbol{a} \cdot \boldsymbol{p}_{\mathrm{if}}\right|^{2} \frac{N_{2 D}(\hbar \omega)}{W} \sum_{n_{\mathrm{r}} \lambda_{i}} f_{n m} \theta\left(\boldsymbol{E}_{m n}-\hbar \omega\right)
$$

Observe that even-odd parity transitions are not allowed due to vanishing of this overlap

Figure 9.7: Calculated absorption coefficient in a $100 \AA \mathrm{GaAs}^{2} / \mathrm{Al}_{0.3} \mathrm{Ga}_{0.7}$ As quantum well structure for in-plane polarized light. The HH transition is about three times stronger than the LH transition in this polarization. In a real material excitonic transition dominate near the bandedges as disucssed in the next chapter.

Indirect Interband Transitions in Bulk

Common Indirect Se/c: $\mathrm{Si}, \mathrm{Ge}, \mathrm{C}, \mathrm{AlAs}, \mathrm{GaP}, \mathrm{AIP}, \mathrm{SiC}, \mathrm{AIN}(\mathrm{zb})$

With photon energies smaller than the direct band gap intermediate transitions can occur since energy need not be conserved

$$
W_{i f}(\boldsymbol{k})=\frac{2 \pi}{\hbar} \int_{f}\left\{\left|M_{\mathrm{em}}\right|^{2}+\left|M_{\mathrm{abs}}\right|^{2}\right\} \delta\left(\boldsymbol{E}_{f}-\boldsymbol{E}_{i}\right) \frac{d^{3} k}{(2 \pi)^{3}}
$$

Pathways which require phonon emission/absorption

Form of the matrix elements:

$$
M_{\mathrm{abs}}=\frac{\frac{\left.\left|\langle c, \boldsymbol{k}+\boldsymbol{q}| H_{\mathrm{cp}}^{\mathrm{abs}}\right| \boldsymbol{c}, \boldsymbol{k}\right\rangle \mid}{} \frac{\left(\left.|c, \boldsymbol{k}| H_{\mathrm{ph}}^{\mathrm{abs}}|v, \boldsymbol{k}|\right|^{2}\right.}{\left(\boldsymbol{E}_{g \mathrm{r}}-\hbar \omega\right)^{2}}}{M_{\mathrm{em}}}=\frac{\left.\left.\left|\langle c, \boldsymbol{k}-\boldsymbol{q}| H_{\mathrm{ep}}^{\mathrm{em}}\right| c, \boldsymbol{k}\right\rangle| |\langle c, \boldsymbol{k}| H_{\mathrm{ph}}^{\mathrm{em}} \mid v, \boldsymbol{k}\right)\left.\right|^{2}}{\left(\boldsymbol{E}_{g \Gamma}-\hbar \omega\right)^{2}} \text { direct optical transitions }
$$

e-phonon scattering matrix elements due to optical phonon intervalley scattering with the associated matrix element:
$D_{i j}$: Deformation potential

$$
M_{q}^{2}=\frac{\hbar D_{i j}^{2}}{2 \rho V \omega_{i j}}\left\{\begin{array}{l}
n\left(\omega_{i j}\right) \\
n\left(\omega_{i j}\right)+1
\end{array}\right\} \rightarrow \text { abs. } \begin{aligned}
& \rho: \text { Mass density } \\
& \omega_{i j}: \text { Intervalley phonon frequency } \\
& n\left(\omega_{i j}\right): \text { phonon occupancy (BE distr.) }
\end{aligned}
$$

For parabolic bands, the absorption rate results in:

\# equivalent

Figure 9.10: Absorption coefficient of Si and Ge. Also shown is absorption coefficient for amorphous silicon which is almost like a direct gap semiconductor, since k-selection is not applicable.

$$
\begin{aligned}
& \text { valleys } \\
& \begin{aligned}
W_{\mathrm{abs}(}(\hbar \omega) & =\frac{M_{\mathrm{ph}}^{2} D_{i j}^{2} J_{v}\left(m_{c} m_{v}\right)^{3 / 2}}{8 \pi^{2}\left(\boldsymbol{E}_{g \Gamma}-\hbar \omega\right)^{2} \hbar^{6} \rho \omega_{i j}} \\
& \times\left[n\left(\omega_{i j}\right)\left(\hbar \omega-\boldsymbol{E}_{g \mathbf{k}^{\prime}}+\hbar \omega_{\mathrm{ij}}\right)^{2}\right. \\
& \left.+\left\{n\left(\omega_{i j}\right)+1\right\}\left(\hbar \omega-\boldsymbol{E}_{g \mathbf{k}^{\prime}}-\hbar \omega_{i j}\right)^{2}\right]
\end{aligned} \\
& \text { Photon-related } \quad M_{\mathrm{ph}}^{2}=\frac{e^{2} \hbar n_{\mathrm{ph}}\left|\boldsymbol{\alpha} \cdot \boldsymbol{p}_{\mathrm{if}}\right|^{2}}{2 m_{0}^{2} \epsilon \omega}
\end{aligned}
$$

Note the contrast in $W_{\text {abs }}$

Direct Bandgap: $\left(\boldsymbol{H} \boldsymbol{w}-\boldsymbol{E}_{g}\right)^{1 / 2}$
Indirect Bandgap: $\left(\hbar \omega-\boldsymbol{E}_{\mathrm{th}}\right)^{2}$
In amorphous se/c, k-conservation requirement is relaxed (no periodicity, xtal momentum not a good quantum label) This results in higher absorption coefficient

Intraband Transitions in Bulk Se/c

$>$ As each band at a k-state is single-valued $1^{\text {st }}$ order vertical intraband transitions are not possible
$>$ Intraband transitions must involve some second
 mechanism (phonon, ionized imp, defects...) to ensure momentum conservation
> Intraband transitions are also known as free carrier absorption and are effective in the cladding
 layers of lasers

Drude Model (to explain free carrier absorption)

$m^{*} \ddot{x}+m^{*} \gamma \dot{x}+m^{*} \omega_{0}^{2}=e E_{0} \cos (\omega t)$
w/o scattering no net energy xfer; e 's oscillate back and forth within the band

By introducing a scattering mechanism, energy gained by the e in one cycle will be partially lost in the form of, say phonon emission by the electron.

$$
\begin{aligned}
\alpha(\hbar \omega) & \propto \frac{1}{\omega^{2}} \\
& \propto \frac{1}{\mu}
\end{aligned}
$$

If the mobility is large (weak scattering) absorption coefficient becomes small

Intraband Transitions in Quantum Wells

$>$ Since a number of subbands may originate from the same bulk band, certain inter-subband transitions (CB1-CB2) may be termed as intraband transitions in QWs
$>$ Such inter-subband transitions have great importance for far infrared detectors and forms the basis of Quantum Cascade Lasers

$$
\begin{aligned}
& \psi^{1}(\boldsymbol{k}, z)= \\
& \psi^{2}(\boldsymbol{k}, z)=\frac{g^{1}(z)}{g^{2}(z)} e^{i \mathbf{k} \cdot \rho} e^{i \mathrm{k} \cdot \rho} u_{n \mathbf{k}}^{1}(r) \\
& u_{n \mathbf{k}}^{2}(\boldsymbol{r})
\end{aligned}
$$

Momentum Matrix Element:

$$
\boldsymbol{p}_{\mathrm{if}}=-\frac{i \hbar}{W} \int g^{2 *}(z) e^{-i \mathbf{k} \cdot \rho} \boldsymbol{a} \cdot \nabla g^{1}(z) e^{i \mathbf{k} \cdot \rho} d^{2} \rho d z
$$

If the polarization lies on the QW plane, then due to the orthogonality of the remaining envelope parts

$$
\left(g^{1}, g^{2}\right), p_{\mathrm{if}}=0
$$

$>$ Thus for EM wave polarized in the plane of the QW, inter-subband transition rate is zero (This can be relaxed under strong mixing of the cell-periodic parts as in the VB.)
$>$ For EM wave polarized along the QW growth axis (say z), we get

$$
\boldsymbol{p}_{\mathrm{if}}=\frac{-i \hbar}{W} \int g^{2 *}(z) \hat{z} \frac{\partial}{\partial z} g^{1}(z) d z \quad \Longleftrightarrow \quad\left|\boldsymbol{p}_{\mathrm{if}}\right| \approx \frac{\hbar}{W}
$$

Brings g^{1} to the same parity with g^{2}

