1) From HW-3, solution repeated below

P29-15 The current is found from Eq. 29-5,

$$
i=\int \overrightarrow{\mathbf{j}} \cdot d \overrightarrow{\mathbf{A}},
$$

where the region of integration is over a spherical shell concentric with the two conducting shells but between them. The current density is given by Eq. 29-10,

$$
\overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{E}} / \rho
$$

and we will have an electric field which is perpendicular to the spherical shell. Consequently,

$$
i=\frac{1}{\rho} \int \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{1}{\rho} \int E d A
$$

By symmetry we expect the electric field to have the same magnitude anywhere on a spherical shell which is concentric with the two conducting shells, so we can bring it out of the integral sign, and then

$$
i=\frac{1}{\rho} E \int d A=\frac{4 \pi r^{2} E}{\rho}
$$

where E is the magnitude of the electric field on the shell, which has radius r such that $b>r>a$.
The above expression can be inverted to give the electric field as a function of radial distance, since the current is a constant in the above expression. Then $E=i \rho / 4 \pi r^{2}$ The potential is given by

$$
\Delta V=-\int_{b}^{a} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

we will integrate along a radial line, which is parallel to the electric field, so

$$
\begin{aligned}
\Delta V & =-\int_{b}^{a} E d r \\
& =-\int_{b}^{a} \frac{i \rho}{4 \pi r^{2}} d r \\
& =-\frac{i \rho}{4 \pi} \int_{b}^{a} \frac{d r}{r} \\
& =\frac{i \rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

We divide this expression by the current to get the resistance. Then

$$
R=\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

Phys- $1122^{\text {nd }}$ Midterm Solutions
2] Let's obtain the capacitance per unit length of a full cylindrical geometry (this was done in class)

$$
\underbrace{\oint_{s} \vec{D}, \vec{n} d a}=Q
$$

only flux through lateral area $\rightarrow 2 \pi r l D_{r}=Q$

$$
\begin{aligned}
& D_{r}=\frac{Q}{l} \cdot \frac{1}{2 \pi r} \Rightarrow E_{r}=\frac{D_{r}}{\varepsilon}=\frac{Q}{l} \frac{1}{2 \pi \varepsilon r} \\
& \Delta V=V(r=a)-V(r=b)=-\int_{b}^{a} \vec{E} \cdot \frac{1}{d l} \\
& \Rightarrow \Delta V=\frac{Q / l}{2 \pi \varepsilon} \ln (b / a)
\end{aligned}
$$

So, for a full cylinder, the capacitance per unit length is $C_{\text {cyl }}=\frac{Q / \ell}{\Delta V}=\frac{2 \pi \varepsilon}{\ln (b / a)}$
In our case we have two quarter cylinder with ε_{1} \& ε_{2} in parallel

$$
\therefore \quad C=\frac{\pi}{2 \ln (b / a)}\left(\varepsilon_{1}+\varepsilon_{2}\right)
$$

3] Charging: $0<t<10 \mathrm{~ms}$
Discharging: $\quad t>10 \mathrm{~ms}$
 $\Rightarrow r=4 \mathrm{~ms}$ $\Rightarrow C=2 \mu \mathrm{~F}$ $\varepsilon=5 \mathrm{~V}, \quad R_{1}=1 \mathrm{KV}_{1}, \quad R_{2}=2 \mathrm{~kb}, \quad C=2 \mu \mathrm{~F}$

4] This is the cyclotron motion under the radial magnetic face $F_{M}=q \vee B=m(a){ }_{\pi}$ inform circular notes

$$
\begin{aligned}
& \Rightarrow \quad R=\frac{m v}{q B} \\
& x=2 R=\frac{2 m v}{q 3}, \quad v=?
\end{aligned}
$$

A change gains a kinetr every $q \Delta V$ from a potatial difference ΔV

$$
K=\frac{1}{2} m V^{2}=q \Delta V \quad \Rightarrow \quad V=\sqrt{\frac{2 q \Delta V}{m}}
$$

$$
\begin{aligned}
\Rightarrow x & =\frac{2 m}{q B} \sqrt{\frac{2 q \Delta V}{m}}=\frac{2 \sqrt{2}}{B} \sqrt{\frac{\Delta V m}{q}} \\
m & =\frac{B^{2} q x^{2}}{8 \Delta V}
\end{aligned}
$$

