E33-9 For a single long straight wire, $B=\mu_{0} i / 2 \pi d$ but we need a factor of "2" since there are two wires, then $i=\pi d B / \mu_{0}$. Finally

$$
i=\frac{\pi d B}{\mu_{0}}=\frac{\pi(0.0405 \mathrm{~m})(296, \mu \mathrm{~T})}{\left(4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)}=30 \mathrm{~A}
$$

E33-15 We imagine the ribbon conductor to be a collection of thin wires, each of thickness $d x$ and carrying a current $d i$. $d i$ and $d x$ are related by $d i / d x=i / w$. The contribution of one of these thin wires to the magnetic field at P is $d B=\mu_{0} d i / 2 \pi x$, where x is the distance from this thin wire to the point P. We want to change variables to x and integrate, so

$$
B=\int d B=\int \frac{\mu_{0} i d x}{2 \pi w x}=\frac{\mu_{0} i}{2 \pi w} \int \frac{d x}{x} .
$$

The limits of integration are from d to $d+w$, so

$$
B=\frac{\mu_{0} i}{2 \pi w} \ln \left(\frac{d+w}{d}\right) .
$$

P33-14 (a) According to Eq. 33-34, the magnetic field inside the wire without a hole has magnitude $B=\mu_{0} i r / 2 \pi R^{2}=\mu_{0} j r / 2$ and is directed radially. If we superimpose a second current to create the hole, the additional field at the center of the hole is zero, so $B=\mu_{0} j b / 2$. But the current in the remaining wire is

$$
i=j A=j \pi\left(R^{2}-a^{2}\right)
$$

so

$$
B=\frac{\mu_{0} i b}{2 \pi\left(R^{2}-a^{2}\right)}
$$

P34-8 (a) $d \Phi_{B} / d t=B d A / d t$, but $d A / d t$ is $\Delta A / \Delta t$, where ΔA is the area swept out during one rotation and $\Delta t=1 / f$. But the area swept out is πR^{2}, so

$$
|\mathcal{E}|=\frac{d \Phi_{B}}{d t}=\pi f B R^{2}
$$

(b) If the output current is i then the power is $P=\mathcal{E} i$. But $P=\tau \omega=\tau 2 \pi f$, so

$$
\tau=\frac{P}{2 \pi f}=i B R^{2} / 2
$$

P34-13 Assume that E does vary as the picture implies. Then the line integral along the path shown must be nonzero, since $\mathbf{E} \cdot \mathbf{l}$ on the right is not zero, while it is along the three other sides. Hence $\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}$ is non zero, implying a change in the magnetic flux through the dotted path. But it doesn't, so $\overrightarrow{\mathbf{E}}$ cannot have an abrupt change.

E36-8 In each case apply $\mathcal{E}=L \Delta i / \Delta t$.
(a) $\mathcal{E}=(4.6 \mathrm{H})(7 \mathrm{~A}) /\left(2 \times 10^{-3} \mathrm{~s}\right)=1.6 \times 10^{4} \mathrm{~V}$
(b) $\mathcal{E}=(4.6 \mathrm{H})(2 \mathrm{~A}) /\left(3 \times 10^{-3} \mathrm{~s}\right)=3.1 \times 10^{3} \mathrm{~V}$.
(c) $\mathcal{E}=(4.6 \mathrm{H})(5 \mathrm{~A}) /\left(1 \times 10^{-3} \mathrm{~s}\right)=2.3 \times 10^{4} \mathrm{~V}$.

P36-2 (a) Since $n i$ is the net current per unit length and is this case i / W, we can simply write $B=\mu_{0} i / W$.
(b) There is only one loop of wire, so

$$
L=\phi_{B} / i=B A / i=\mu_{0} i \pi R^{2} / W i=\mu_{0} \pi R^{2} / W
$$

P36-3 Choose the y axis so that it is parallel to the wires and directly between them. The field in the plane between the wires is

$$
B=\frac{\mu_{0} i}{2 \pi}\left(\frac{1}{d / 2+x}+\frac{1}{d / 2-x}\right)
$$

The flux per length l of the wires is

$$
\begin{aligned}
\Phi_{B} & =l \int_{-d / 2+a}^{d / 2-a} B d x=l \frac{\mu_{0} i}{2 \pi} \int_{-d / 2+a}^{d / 2-a}\left(\frac{1}{d / 2+x}+\frac{1}{d / 2-x}\right) d x \\
& =2 l \frac{\mu_{0} i}{2 \pi} \int_{-d / 2+a}^{d / 2-a}\left(\frac{1}{d / 2+x}\right) d x \\
& =2 l \frac{\mu_{0} i}{2 \pi} \ln \frac{d-a}{a}
\end{aligned}
$$

The inductance is then

$$
L=\frac{\phi_{B}}{i}=\frac{\mu_{0} l}{\pi} \ln \frac{d-a}{a} .
$$

